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CHAPTER 1 

Using the Integral in the 
Approximation of Area

In this chapter, we will discuss the approximation of the area of a region 

between the graph of a positive-valued function and an interval. 

The Summation Notation 

Let’s begin by introducing notation that will turn out to be convenient 

in expressing sums. Given numbers a1, a2, . . . , an, we can indicate the 

sum of the numbers as 

1 2 .na a a+ + +�  

We can also indicate the sum using the summation notation: 

1

n

k
k

a
=
�  

(read “sigma ak as k runs from 1 to n” ). The subscript k is the 
summation index, and is a “dummy index”, in the sense that it can be 

replaced by any convenient letter. Thus, both 

1 1

and
n n

j l
j l

a a
= =
� �  

denote the sum a1 + a2 + · · · + an. 

 
Example 1 The sum of the first n positive integers can be expressed 

succinctly: 

( )
1

1
1 2 3 .

2

n

k

n n
k n

=

+
= + + + + =� �
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2 INTRODUCTORY CALCULUS: UNDERSTANDING THE INTEGRAL 

Indeed, if we set 
1

,
n

n k
S k

=
=�  we have 

( )1 2 1 .nS n n= + + + − +�  

Let’s add the terms in the opposite order: 

( )1 2 1.nS n n= + − + + +�  

Therefore, 

( ) ( )( ) ( )( ) ( )
( ) ( ) ( ) ( )

2 1 1 2 2 1 1

1 1 1 1 .

nS n n n n

n n n n

= + + − + + + + − + +
= + + + + + + + +

�
�

 

where the sum has n terms. Thus, 

( )2 1 ,nS n n= +  

so that 

( )1
.

2
n

n n
S

+
=  

� 
The following rules are natural and easy to confirm: 

( )
1 1 1

,
n n n

k k k k
k k k

a b a b
= = =

+ = +� � �  

and 

1 1

n n

k k
k k

ca c a
= =

=� �  (the constant rule for sums) 

 
Proof 
By the associativity of addition, 

( ) ( ) ( )

( ) ( )
1 1

1

1 2 1 2

1 1

.

n

k k n n
k

n n

n n

k k
k k

a b a b a b

a a a b b b

a b

=

+

= =

= + = + + + +

= + + + + + +

= +

�

� �

�

� �   
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 USING THE INTEGRAL IN THE APPROXIMATION OF AREA 3 

By the distributivity of multiplication with respect to sums, 

( )1 2 1 2

1 1

n n

k n n k
k k

ca ca ca ca c a a a c a
= =

= + + + = + + + =� �� �  

� 

The Area under the Graph of a Function 

Assume that f is continuous on the interval [a, b] and f (x) ≥ 0 for each 

[ , ]x a b∈ . Let G be the region in the xy-plane that is bounded by the 

graph of f, the interval [a, b] on the x-axis, the line x = a and the line  

x = b. We will refer to G simply as the region between the graph of f 
and the interval [a, b]. Our intuitive notion of the area of G is a 

measure of the size of G. Even though we may not be able to compute 

the area of G exactly, we should be able to compute approximations. We 

will devise a strategy that will be based on the approximation of G, in a 

geometric sense, by unions of rectangles. 

 

Figure 1: The region between the graph of f and the interval [a, b] 

Definition 1 The set of points P = {x0, x1, . . . , xk−1, xk, . . . , xn} is a 
partition of the interval [a, b] if 

0 1 2 1 .k k na x x x x x x b−= < < < < < < < =� �  

The interval [xk−1, xk] is the kth subinterval that is determined by the 

partition P. We will denote the length of the kth subinterval by �xk, so 

that �xk = xk − xk−1. The maximum of the lengths of the subintervals 

determined by P is the norm of the partition P. We will denote the 

norm of P by �P�, so that �P� is the maximum of �x1, �x2, . . . , �xn. 

we can abbreviate the expression “maximum of �x1, �x2, . . . , �xn” as 

maxk=1,…,n �xk or maxk �xk. Thus, 

x

y

G

a b

f
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4 INTRODUCTORY CALCULUS: UNDERSTANDING THE INTEGRAL 

1, ,
max .kk n

P xΔ
=

=
�

 

Let’s sample an arbitrary value of x in the kth subinterval [xk−1, xk] 

and denote it by *

kx . 

Thus, *

1k k kx x x− ≤ ≤ , but there is no other restriction on the choice 

of *

kx . Consider the rectangle that has as its base the interval [xk−1, xk] 

and has height equal to the value of f at *

kx . If �xk is small, it is 

reasonable to approximate the area of the slice of G between the lines x 
= xk−1 and x = xk by the area of such a rectangle. 

 

Figure 2: An approximating rectangle 

The area of the rectangle is 

( )( ) ( )* *

1 .k k k k kf x x x f x xΔ−− =  

The sum of the areas of such rectangles should be a reasonable 

approximation to the area of G if the maximum of the lengths of the 

subintervals, i.e., �P� is small: 

( )*

1

Area of .
n

k k
k

f x x GΔ
=

≅�  

We would expect the approximation to be as accurate as desired if 

�P� = maxk �xk is sufficiently small. 

 

Figure 3: Approximating rectangles 

x

y

xk 1 xkxk

f xk

a b
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 USING THE INTEGRAL IN THE APPROXIMATION OF AREA 5 

Example 2 Let f (x) = x2 + 1, and let G be the region between the graph 

of f and the interval [0, 2]. Figure 4 shows G. 

 

Figure 4 

Let 

{ }0, 0.5,1,1.2,1.4,1.6,1.8, 2 ,P =  

so that P is a partition of the interval [0, 2]. With reference to the 

notation of Definition 1, we have 

0 1 2 3 4 5 6 70, 0.5, 1, 1.2, 1.4, 1.6, 1.8 and 2.x x x x x x x x= = = = = = = =  

The lengths of the subintervals determined by the partition P are 

1 2 3 4 70.5 and 0.2.x x x x xΔ Δ Δ Δ Δ= = = = = =�  

Therefore, the norm of P is 0.5: 

0.5.P =  

Let’s form the rectangle of height f (ck) on the kth subinterval [xk−1, 

xk], where ck is the midpoint of [xk−1, xk], k = 1, 2, . . . , 7, and 

approximate the area of the region G by the sum of these rectangles. 

Figure 5 indicates the rectangles. 

 

Figure 5 

2 1 1 2
x

2

y

G

2 1 1 2
x

2

4

y
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6 INTRODUCTORY CALCULUS: UNDERSTANDING THE INTEGRAL 

The approximation to the area of G is 

( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

7

1

0.25 0.5 0.75 0.5 1.1 0.2

1.3 0.2 1.5 0.2 1.7 0.2 1.8 0.2

4.5685.

k k
k

f c x f f f

f f f f
=

Δ ≅ + +

+ + + +
≅

�
 

In Section 5.4 we will show that the area of G is 

14
4.666 67,

3
≅  

so that the absolute error of our approximation is about 0.1. For many 

purposes, the magnitude of the error may be unacceptable. On the other 

hand, we would expect the error to be as small as desired if the interval 

[0, 2] is partitioned to subintervals of sufficiently small length. � 

In the other examples of this chapter, we will consider the 

partitioning of an interval [a, b] into n subintervals of equal length, 

since the corresponding sums can be expressed and computed easily. 

Thus, 

for 1,2, , .k
b a

x x k n
n
−Δ = Δ = = �  

and 

, 0,1, 2, , .kx a k x k nΔ= + = �  

We will approximate the area of the region between the graph of f 
and the interval [a, b] by sums of the form 

( ) ( ) ( )* * *

1 1 1

.
n n n

k k k k
k k k

f x x f x x x f xΔ Δ Δ
= = =

= =� � �  

The intermediate points *

kx , k = 1, 2, ..., n, can be chosen in many 

different ways. We will consider the following strategies: 

 

 1. A left-endpoint sum is obtained by choosing *

kx  to be the left 

endpoint xk−1 of the kth subinterval [xk−1, xk]. We have 

www.EngineeringEBooksPdf.com



 USING THE INTEGRAL IN THE APPROXIMATION OF AREA 7 

( )1 1 .kx a k xΔ− = + −  

We will denote the left-endpoint sum corresponding to the 

function f and the partitioning of the interval [a, b] to n 

subintervals of equal length as ln. Thus, 

( )1

1

.
n

n k
k

l f x xΔ−
=

=�  

 2. A right-endpoint sum is obtained by choosing *

kx  to be the right 

endpoint xk of the kth subinterval [xk−1, xk]. We have 

.kx a k xΔ= +  

We will denote the right-endpoint sum corresponding to the 

function f and the partitioning of the interval [a, b] to n 

subintervals of equal length as rn. Thus, 

( )
1

.
n

n k
k

r f x xΔ
=

=�  

 3. A midpoint sum is obtained by choosing *

kx  to be the midpoint ck 

of the kth subinterval [xk−1, xk]. We have 

( )

1 1
( ( 1) )

2 2
1 1

(2 2 1 ) ( ) .
2 2

k k
k

x x
c a k x a k x

a k x a k x

Δ Δ

Δ Δ

− += = + − + +

= + − = + −
 

We will denote the midpoint sum corresponding to the function f 
and the partitioning of the interval [a, b] to n subintervals of equal 

length as mn. Thus, 

( )
1

.
n

n k
k

m f c xΔ
=

=�  

As we will discuss in more detail in the next chapter, any of the 
above sums approximates the area of the region between the 
graph of f and the interval [a, b] as accurately as desired, provided 
that f is continuous on [a, b] and �x is small enough. Since 
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8 INTRODUCTORY CALCULUS: UNDERSTANDING THE INTEGRAL 

,
b a

x
n

Δ −=  

�x is as small as necessary if n is sufficiently large. Therefore, the 
area A (G) of the region G between the graph of f and the interval 
[a, b] is the limit of left-endpoint sums, right-endpoint sums or 
midpoint sums as n tends to infinity: 

( ) lim lim lim .n n nn n n
A G l r m

→∞ →∞ →∞
= = =  

 
Example 3 Let f (x) = x. The region G between the graph of f and the 

interval [0, 1] is a triangle whose base has length 1 and whose height is 1. 

Therefore, the area of G is 

( )( )1 1
1 1 .

2 2
=  

Consider the approximation of the area of G by right-endpoint sums rn. 

Figure 6 illustrates the rectangles that correspond to n = 16. Show that 

limn�∞ rn = area of G. 

 

Figure 6 

 
Solution 

We have 

( )
1 1

,
n n

n k k
k k

r f x x x xΔ Δ
= =

= =� �  

  

1
x

1

y
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 USING THE INTEGRAL IN THE APPROXIMATION OF AREA 9 

where 

1
and .k

k
x x k x

n n
Δ Δ= = =  

Therefore, 

2 2
1 1 1

1 1
.

n

n n n

n
k k k

k k
r k

n n n= = =

� � � �= = =� � � �
� � � �

� � �  

In Example 1 we showed that 

( )
1

1
.

2

n

k

n n
k

=

+
=�  

Therefore, 

( ) ( )
2 2 2

1

1 11 1
.

2 2

k

n
k

n n n n
r k

n n n=

+ +� �
= = =� �

� �
�  

Thus, 

( )
2

2 2

1 11 11 1
lim lim lim lim .

2 2 2 2
nn n n n

nn n n nr
n n→∞ →∞ →∞ →∞

� �+ +� �+ � �= = = =
 

Therefore, the area of G is 1/2. � 

 
Example 4 Let f (x) = x2. 

a) Sketch the region G between the graph of f and the interval [1, 3]. 

b) Determine the area of G as the limit of left-endpoint sums. The 

following expression for the sum of the squares of the fist n positive 

integers will be helpful: 

( )( )2

1

1
1 2 1

6

n

k

k n n n
=

= + +�  

(as you can confirm by mathematical induction). 
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10 INTRODUCTORY CALCULUS: UNDERSTANDING THE INTEGRAL 

Solution 
a) Figure 7 shows the graph of f and the region G. 

 

Figure 7 

b) The interval [1, 3] is subdivided into n subintervals of length 

3 1 2
.x

n n
Δ −= =  

The corresponding partition consists of the points 

2
1 1 , 0,1, 2, , ,kx k x k k n

n
Δ � �= + = + =� �

� �
�  

Therefore, the corresponding left-endpoint sum for f is 

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

1

1 1

2

1

2

2
1

2

2
1 1 1

2

2 3
1 1 1

2 2
1 1

2 12
1

4 1 4 12
1

2 4 4
1 1 1

2 8 8
1 1 1 .

n n

n k
k k

n

k

n

k

n n n

k k k

n n n

k k k

l f x x f k
n n

k
n n

k k
n n n

k k
n n n

k k
n n n

Δ−
= =

=

=

= = =

= = =

� �� �= = + − � �� �� �� �

−� �
= +� �

� �
� �− −

= + +� �� �
� �

� �= + − + −� �
� �

= + − + −

� �

�

�

� � �

� � �

 

We have 

1

1 1 1 1 ,
n

k

n
=

= + + + =� �  

1 3
x

9

y

G
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 USING THE INTEGRAL IN THE APPROXIMATION OF AREA 11 

since n terms are added. 

We also have 

( ) ( ) ( )1

1 1

1
1 0 1 2 1 ,

2

n n

k j

n n
k n j

−

= =

−
− = + + + + − = =� ��  

as in Example 1 (with n replaced by n − 1). 

Finally, 

( ) ( )2
1

2 22 2

1 1

1 0 1 3 1 .
n n

k j

k n j
−

= =

− = + + + + − =� ��  

We will apply the formula 

( )( )2

1

1
1 2 1 ,

6

n

k

k n n n
=

= + +�  

with n replaced by n − 1. Thus, 

( )( )( )
1

2

1

1
1 2 1 .

6

n

j

j n n n
−

=

= − −�  

Therefore, 

( ) ( )

( ) ( ) ( )( )( )

( ) ( )( )

2

2 3
1 1 1

2 3

2

2 8 8
1 1 1

12 8 8 1
1 2 1

2 6

4 1 4 1 2 1
2 .

3

n n n

n
k k k

l k k
n n n

n n
n n n n

n n n
n n n
n n

= = =

= + − + −

−� � � �= + + − −� � � �
� �� �

− − −
= + +

� � �

 

Thus, 

( )( ) ( )
2

1 2 11 4 4 26
lim 2 4 lim lim 2 4 2 .

3 3 3
nn n n

n nn
l

n n→∞ →∞ →∞

− −−= + + = + + =  

Therefore, the area of the region G between the graph of f and the 

interval [1, 3] is 26/3. 
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12 INTRODUCTORY CALCULUS: UNDERSTANDING THE INTEGRAL 

Figure 8 shows the rectangles corresponding to the partitioning of 

the interval [1, 2] into 10 subintervals of equal length. � 

 

Figure 8 

Example 5 Let f (x) = sin (x). In Section 5.3 we will show that the area 

of the region G between the graph of f and the interval [0, π] is 2. 

a) Sketch the region G. 
b) Midpoint sums are usually more accurate in approximating the area, 

compared to left-endpoint sums and right-endpoint sums. 

Approximate the area of G by midpoint sums that correspond to the 

partitioning of [0, π] to 2k subintervals of equal length, where k = 2, 

. . . , 7. Do the numbers support the expectation that it should be 

possible to approximate the area of G with desired accuracy by a 

midpoint sum, provided that the length of each subinterval is small 

enough? 

 
Solution 
a) Figure 9 shows the region G. 

 

Figure 9 

b) We have 

( ) ( )
1 1

sin ,
n n

n k k
k k

m f c x c xΔ Δ
= =

= =� �  

1 3
x

1

9

y

π
2

π 3 π
2

2 π
x

1

1
y

G
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 USING THE INTEGRAL IN THE APPROXIMATION OF AREA 13 

where 

1
and .

2
kx c k x

n
πΔ Δ� �= = −� �

� �
 

Figure 10 shows the rectangles corresponding to a partitioning of the 

interval [0, π] to 16 subintervals of equal length. 

 

Figure 10 

Table 1 displays the relevant data. The numbers support the 

expectation that it should be possible to approximate the area of G 

with desired accuracy by a midpoint sum, if the length of each 

subinterval is small enough. � 

n �x mn |mn − 2|

4 .25 2.052 34 5.2 × 10−2 

8 .125 2.012 91 1.3 × 10−2 

16 .0625 2.003 22 3.2 × 10−3 

32 .03125 2.000 8 8.0 × 10−4 

64 .015625 2.000 2 2.0 × 10−4 

128 7.8125 × 10−3 2.000 05 5.0 × 10−5 

Table 1 

In the next chapter, we will introduce a fundamental concept of 

calculus, namely the integral. You will see that the integral of a positive-

valued function can be interpreted as area. 

  

π
2

π 3 π
2

2 π
x

1

1
y
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CHAPTER 2 

Understanding the Concept 
of the Integral 

In this chapter, we will introduce the fundamental concept of the 

integral. The integral of a positive-valued function on an interval is the 

area of the region between the graph of the function and the interval. 

We will be able to interpret the integral of a function that has positive or 

negative values on an interval as “the signed area” of the region between 

the graph of the function and the interval. In the next chapter, you will 

see that the displacement of an object in one-dimensional motion over a 

time interval is the integral of the velocity function on that interval. In 

later chapters, the integral will appear as the work done in moving an 

object, or as the probability that the values of a random variable are in a 

certain interval. 

The Riemann Integral and Signed Area 

As in Section 5.1, let P = {x0, x1, . . . , xk−1, xk, . . . , xn} be a partition of 

the interval [a, b], so that 

1 2 1 1 .o k k n na x x x x x x x b− −= < < < < < < < =� �  

Recall that �P�, the norm of the partition P, is the maximum of 

the lengths of subintervals determined by P: 

( )1
1, , 1, ,

max max .k k kk n k n
P x x xΔ −= =

= = −
� �

� �  

Let f be a function defined on [a, b]. As in Section 5.1, we will 

sample an arbitrary value of x in the kth subinterval [xk−1, xk] and denote 

it by *

kx . Thus, *

1 ,k k kx x x− ≤ ≤  but there is no other restriction on the 

choice of * .kx  
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Definition 1 Assume that P = {x0, x1, . . . , xk−1, xk, . . . , xn} is a 

partition of the interval [a, b], and 
*

1,k k kx x x−	 
∈ � � . A sum of the form 

( )*

1

n

k k
k

f x xΔ
=
�  

is a Riemann sum for f on the interval [a, b]. 

 

Figure 1: A typical term of a Riemann sum is ( )*

k kf x xΔ  

Thus, a Riemann sum for f on [a, b] approximates the area of the 

region between the graph of f and the interval [a, b] if f (x) ≥ 0 for each 

[ , ]x a b∈  and the norm of the partition is small. Let’s lift the restriction 

on the sign of f, and assume that any Riemann sum for f on [a, b] 

approximates a number which depends only on the function f and the 
interval [a, b] if the norm of the partition is small. We will denote that 

number as 

( )
b

a
f x dx
  

and refer to it as the Riemann integral of f on [a, b]. You can imagine 

that we have replaced the summation symbol in the expression 

( )*

1

n

k k
k

f x xΔ
=
�  

by an elongated S, and �xk by dx (“dx” within the present context 

should not be confused with “dx” within the context of the differential, 

although a connection will arise later). We will also assume that the 

approximation is as accurate as desired provided that the norm of the 

partition is small enough. Thus, we can define the Riemann integral of f 
on [a, b] as follows: 

x

y

xk 1 xkxk

f xk
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Definition 2 (The informal definition of the integral) We say that a 

function f is Riemann integrable on the interval [a, b] and that the 
Riemann integral of f on [a, b] is 

( )
b

a
f x dx
  

if 

( ) ( )*

1

n b

k k a
k

f x x f x dxΔ
=

−� 
  

is as small as desired provided that the norm of the partition P = {x0, x1, . 

. . , xn} of [a, b] is sufficiently small. 

Thus, the Riemann integral of f on [a, b] corresponds to the area of the 

region between the graph of f and [a, b] if f is positive-valued on [a, b]. 

 

Figure 2: ( ) ,
b

a
f x dx
  is the area of G if f is positive-valued 

We may express the relationship between Riemann sums and the 

Riemann integral by writing 

( ) ( )*

0
1

lim .
n b

k k aP
k

f x x f x dxΔ
→ =

=� 
  

You can find the precise definition of the Riemann integral at the 

end of this chapter. Riemann was a mathematician who made crucial 

contributions in many areas of mathematics, and played a prominent 

role in establishing firm foundations for the concept of the integral. 

Since we will not have occasion to use any other type of integral in this 

book, we will refer to the Riemann integral simply as “the integral”. 

  

x

y

G

a

y f x

b
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In the notation, 

( ) ,
b

a
f x dx
  

for the integral of f on [a, b], the number a is referred to as the lower 
limit of the integral, and b as the upper limit of the integral. The 

function f is the integrand. The computation of the integral may be 

described by saying that “f is integrated from a to b”. 
We will calculate many integrals in the following chapters. Let’s 

determine the integrals of constant functions before we proceed further. 

If f is constant and has the value c > 0, the region between the graph of f 
and an interval [a, b] is a rectangle with area c (b − a). Therefore, we 

should have 

( ) ( ).
b b

a a
f x dx cdx c b a= = −
 
  

 

Figure 3 

This is the case, irrespective of the sign of c. Indeed, for any partition 

{x0, x1, . . . , xn} of [a, b] and any choice of the intermediate points * ,kx  

( ) ( )*

1 1 1

,
n n n

k k k k
k k k

f x x c x c x c b aΔ Δ Δ
= = =

= = = −� � �  

since the sum of the lengths of the subintervals is the length of the 

interval [a, b]. Let’s record this fact: 

Proposition 1 Let f be a constant function, so that f (x) = c for each 
,x ∈�  where c is a constant. Then 

( ) ( ).
b b

a a
f x dx cdx c b a= = −
 
  

  

x

y

y c

a b
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You can find an example of a function that is not Riemann 

integrable at the end of this chapter. We have the assurance every 

continuous function is Riemann integrable: 

 
Theorem 1 Assume that f is continuous on the interval [a, b]. Then f is 
Riemann integrable on [a, b]. 

The proof of the theorem is left to a course in advanced calculus. 

By Theorem 1, a Riemann sum 

( )*

1

n

k k
k

f x xΔ
=
�  

for the function f on the interval [a, b] approximates the integral of f on 

[a, b] as accurately as desired, provided that f is continuous on [a, b] and 

maxk �xk is small enough. In particular, we can approximate an integral 

by left-endpoint sums, right-end point sums or midpoint sums, as in 

Section 5.1 (without the restriction that the functions are positive-

valued). If 

,
b a

x
n

Δ −=  

�x is as small as necessary if n is sufficiently large. Therefore, 

( )lim lim lim ,
b

n n n an n n
l r m f x dx

→∞ →∞ →∞
= = = 
  

with the notation of Section 5.1. 

Example 1 Let f (x) = x, as in Example 3 of Section 5.1. In that 

example, we approximated the area of the region G between the graph 

of f and the interval [0, 1] by right-endpoint sums. We showed that 

( )
2

1 1
lim lim .

2 2
nn n

n n
r

n→∞ →∞

+
= =  

Therefore, 

( )1 1

0 0

1
.

2
f x dx xdx= =
 
  

� 
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Figure 4: The area of G is 
1

0
0.5xdx =
  

Let’s consider the case of a function f that is continuous on an 

interval [a, b] and f (x) ≤ 0 for each [ , ]x a b∈ , and interpret the integral 

of f on [a, b] geometrically. Let G be the region between the graph of f 
and [a, b], as illustrated in Figure 5. 

 

Figure 5: ( )
1

0
f x dx
  is the signed area of G 

Let P = {x0, x1, x2, . . . , xn} be a partition of [a, b], and 
*

1, , 1,2, ,k k kx x x k n−	 
∈ =� � � . If �P� is small, the Riemann sum 

( )*

1

n

k k
k

f x xΔ
=
�  

approximates 

( ) .
b

a
f x dx
  

Consider the rectangle Rk that has the vertices 

( ) ( ) ( )( )*

1 1,0 , ,0 , ,k k k kx x x f x− −  and ( )( )*,k kx f x , as in Figure 6. 

1 1 2
x

1

1

2

y

G

x

y

a b

y f x

G
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Figure 6 

Since f (x) ≤ 0 for each [ , ]x a b∈ , the term ( )*

x kf x xΔ  is (−1) × (the 

area of Rk). Thus, the Riemann sum 

( )*

1

n

k k
k

f x xΔ
=
�  

approximates (−1) × (area of G). We will refer to (−1) × (area of G) as 

the signed area of G. Therefore, we will identify the integral of f on  

[a, b] with the signed area of G: 

( )The signed area of .
b

a
G f x dx= 
  

The area of G is 

( ) .
b

a
f x dx−
  

Example 2 Let f (x) = sin (x). Figure 7 shows the region G between the 

graph of f and the interval [π, 4π/3]. 

 

Figure 7: The signed area of G is −1/2 

We have sin (x) ≤ 0 if π ≤ x ≤ 4π/3. In Section 5.3 we will show that 

( )4 3 1
sin .

2
x dx

π

π
= −
  

x
xk 1

f xk

xkxk

π
2

π 2 π
x

1

1
y

4 π

3

G
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Therefore, the signed area of G is −1/2, and the area of G is 

( )4 3 1 1
sin .

2 2
x dx

π

π

� �− = − − =� �
� �
  

Approximate the integral of sine on [π, 4π/3] by midpoint sums that 

correspond to the partitioning of [0, π] to 2k subintervals of equal 

length, where k = 2, . . . , 6. 

 
Solution 

We have 

( )
1

sin .
n

n k
k

m c xΔ
=

=�  

where 

4

13 and , 1,2,.... .
3 2

kx c k x k n
n n

π π πΔ Δ
−

� �= = = − =� �
� �

 

 

Figure 8 

Table 1 displays mn for n = 4, 8, 16, 32 and 64. The numbers in 

Table 1 are consistent with the fact that 

( )4 3 1
lim sin .

2
nn

m x dx
π

π→∞
= = −
  

� 

  

π
2

π 2 π
x

1

1
y

4 π

3

G
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n mn 

4 −0.501431 

8 −0.500357 

16 −0.500089 

32 −0.500022 

64 −0.500006 

Table 1 

With reference to Figure 9, if a function f is positive-valued on [a, b] 

we should have 

(area of G1) + (area of G2) = area of 1 2 .G G∪  

 

Figure 9: The integral is additive with respect to intervals 

Thus, we expect that 

( ) ( ) ( ) .
c b b

a c a
f x dx f x dx f x dx+ =
 
 
  

This is indeed the case, irrespective of the sign of the function. We 

will refer to this property of the integral as “the additivity of the 

integral with respect to intervals”. 
 
Theorem 2 (The Additivity of the Integral with respect to Intervals) 
Assume that f is continuous on [a, b] and a < c < b. Then 

( ) ( ) ( ) .
c b b

a c a
f x dx f x dx f x dx+ =
 
 
  

We leave the rigorous proof of Theorem 2 to a course in advanced 

calculus. 

Let’s assume that f is continuous on the interval [a, b] and that the 

sign of f changes at a finite number of points in (a, b). In order to be 

specific, let’s assume that f (c) = 0, f (x) > 0 on (a, c) and f (x) < 0 on  

x

y

a c b

G1 G2
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(c, b), as in Figure 10. With reference to Figure 10, the region G 

between the graph of f and the interval [a, b] is the union of G+ and G−. 

 

Figure 10: ( )
b

a
f x dx
  = area of G+ − area of G− 

By the additivity of the integral with respect to intervals, 

( ) ( ) ( ) .
c b b

a c a
f x dx f x dx f x dx+ =
 
 
  

Thus, 

( ) ( ) ( )area of signed area of .
b

a
G G f x dx+ −+ = 
  

We will identify the signed area of the region G G G+ −= ∪  with the 

integral of f on [a, b]. The area of G is 

( ) ( ) .
c b

a c
f x dx f x dx−
 
  

More generally, if a function f is continuous on an interval [a, b], we 

will identify the signed area of the region G between the graph of f and 
[a, b] with the integral of f on [a, b]. If we wish to compute the area of 

G, we must determine the subintervals of [a, b] on which f has constant 

sign, and calculate the integral of f on each subinterval. The integral 

must be multiplied by −1 if the sign of f is negative on the relevant 

subinterval. 

 
Example 3 Let f (x) = sin (x). 

a) Sketch the region G between the graph of f and the interval  

[0, 4π/3]. 

b) In Section 5.3 we will show that 

x

y

G

G

ba c
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( ) ( )4 /3

0

1
sin 2 and sin

2
x x dx

π π

π
= = −
 
  

Determine the signed area and the area of G. 
c) Approximate 

( )
4 /3

sin x dx
π

π
  

by midpoint sums corresponding to the partitioning of the interval 

[0, 4π/3] into 2k subintervals of equal length, where k = 3, . . . , 7. 

 
Solution 
a) Figure 11 shows the region G. 

 

Figure 11 

b) With reference to Figure 11, 

( )
0

the area of sin 2,G x
π

+ = =
  

and 

( )4 3

0

1
the signed area of sin .

2
G x dx

π

− = = −
  

Since sin (x) < 0 if π < x < 4π/3, the area of G− is 1/2. 

The signed area of G is 

( ) ( ) ( )
4 3 4 3

0

1 3
sin sin sin 2 ,

2 2
x dx x dx x dx

π π π

π π

� �= + = + − =� �
� �
 
 
  

and the area of G is 

2 π
x

1

1

y

G

G
4 π

3
0 π
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( ) ( )
4 3

0 0

1 5
area of area of sin sin 2 .

2 2
G G x dx x dx

π π

+ −
� �+ = − = − − =� �
� �
 
  

c) The midpoint sum corresponding to the partitioning of the interval 

[0, 4π/3] to n subintervals of equal length is 

( ) ( )
1 1

sin ,
n n

n k k
k k

m f c x c xΔ Δ
= =

= =� �  

where 

4

4 13 and .
3 2

kx c k x
n n

π
πΔ Δ� �= = = −� �

� �
 

Table 2 displays mn and 

( )4 3

0
sinnm x dx

π
− 
  

for n = 2k, k = 3, . . . , 7. The numbers in Table 2 support the 

expectation that 

( )4 3

0
lim sin .nn

m x dx
π

→∞
= 
  

� 

n �x mn |mn − 1.5| 

8 .523 599 1.51727 1.7 × 10−2 

16 .261 799 1.50429 4.3 × 10−3 

32 .130 9 1.50107 1.1 × 10−3 

64 6.544 98 × 10−2 1.50027 2.7 × 10−4 

128 3.272 49 × 10−2 1.50007 6.7 × 10−5 

Table 2 

Remark 1 In the notation 

( ) ,
b

c
f x dx
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the variable x is a dummy variable, in the sense that the letter x can be 

replaced by any other letter. Thus, the expressions 

( ) ( ) ( ), ,
b b b

a a c
f x dx f t dt f dτ τ
 
 
  

all have the same meaning: The integral of the function f on the interval 

[a, b]. For example, 

( ) ( ) ( )
0 0 0

sin sin sin 2.x dx t dt u du
π π π

= = =
 
 
  

This is parallel to the fact that the summation index for a Riemann 

sum is a dummy index, and we can use any letter to denote the 

independent variable of the function: The expressions 

( ) ( ) ( )* * *

1 1 1

, ,
n n n

k k l l j j
k l j

f x x f x x f t xΔ Δ Δ
= = =
� � �  

have the same meaning. ◊ 

 
Remark 2 Your computational utility should be able to provide you 

with an accurate approximation to an integral. The underlying 

approximation schemes are referred to as numerical integration 
schemes, or numerical integration rules. We will see some of these rules 

in Section 6.5. A computer algebra system such as Maple or 

Mathematica is able to provide you with the exact value of many 

integrals. Soon, you will be able to compute the exact values of many 

integrals yourselves. ◊ 

The Integrals of Piecewise Continuous Functions 

Theorem 1 states that a function which is continuous on a closed and 

bounded interval is (Riemann) integrable on that interval. It will be 

useful to expand the scope of the integral to a wider class of functions. 

Assume that f is continuous on the interval (a, b) and 

( ) ( )lim  and lim
x a x b

f x f x
→ + → −
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exist. If we set 

( )
( ) ( )

( )
( )

if , ,

lim if ,

lim if ,

x a

x b

f x x a b
g x f x x a

f x x b
→ +

→ −

� ∈
�= =�
� =�

 

then g is continuous on [a, b]. We define the integral of f on [a, b] to be 

the same as the integral of g on [a, b]: 

( ) ( ) .
b b

a a
f x dx g x dx=
 
  

This amounts to the fact that 

( )b

a
f x dx
  

is approximated by Riemann sums of the form 

( )*

1

,
n

k k
k

f x xΔ
=
�  

where f (x0) should be interpreted as limx�a+ f (x) and f (b) should be 

interpreted as limx�b− f (x). 

 
Example 4 Let 

( ) ( )sin x
f x

x
=  

if x ≠ 0. 

a) Discuss the definition of ( )
0

.f x dx
π


  

b) Consider the approximate value of 

( )
0

sin x
dx

x
π


  

that you obtain from your computational utility to be the exact 

value of the integral. Approximate 
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( )
0

sin x
dx

x
π


  

by midpoint sums corresponding to the partitioning of [a, b] into 

10, 20, 40 and 80 subintervals of equal length. Do the numbers 

support the fact that the integral can be approximated with desired 

accuracy by Riemann sums, provided that the norm of the partition 

is small enough? 

 
Solution 
a) Since sin (x) and x define continuous functions on the number line, 

the quotient f is continuous on the entire number line, with the 

exception x = 0. We have 

( ) ( )
0 0

sin
lim lim 1.
x x

x
f x

x→ →
= =  

If we set 

( )
sin

if 0,

1 if 0,

x
x

g x x
x

� ≠�= �
� =�

 

then g is continuous on [0, π]. We set 

( ) ( )
0 0

sin
.

x
dx g x dx

x
π π

=
 
  

The integral corresponds to the area of the region between the graph 

of f and the interval [0, π], as illustrated in Figure 12. 

 

Figure 12 

  

π
x

1

y
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b) We have 

( )
1

sin
,

n
k

n
k k

c
m x

c
Δ

=

=�  

where 

1
and .

2
kx c k x

n
πΔ Δ� �= = −� �

� �
 

Table 3 displays the relevant data. We have 

( )
0

sin
1.851 94,

x
dx

x
π

≅
  

rounded to 6 significant digits. The numbers in Table 3 support the fact 

that the integral can be approximated with desired accuracy by Riemann 

sums, provided that the norm of the partition is small enough. � 
 

n mn ( )π
− 
0nm f x dx

10 1.85325 1.3 × 10−3 

20 1.85226 3.3 × 10−4 

40 1.85202 8.2 × 10−5 

80 1.85196 2.0 × 10−5 

Table 3 

We will say that f is piecewise continuous on the interval [a, b] if f 
has at most finitely many removable or jump discontinuities in [a, b]. 
Thus, f has (finite) one-sided limits at its discontinuities. In such a case 

we will define the integral of f on [a, b] as the sum of its integrals over 
the subintervals of [a, b] that are separated from each other by the 
points of discontinuity of f. 
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Example 5 Let 

( ) ( )
( )

sin if 0 2,

cos if 2 3 2.

x x
f x

x x
π

π π
≤ <��= � < <��

 

Figure 13 shows the graph of f and the region between the graph of f 
and the interval [0, 3π/2]. 

 

Figure 13 

The function f is piecewise continuous on the interval [0, 3π/2]. 

Indeed, the only point of discontinuity of f in [0, 3π/2] is π/2. We have 

( ) ( )
2 2

lim lim sin 1,
x x

f x x
π π→ − →

= =  

and 

( ) ( )
2 2

lim lim cos 0.
x x

f x x
π π→ + →

= =  

Therefore, 

( ) ( ) ( ) ( ) ( )3 2 2 3 2 2 3 2

0 0 2 0 2
sin cos .f x dx f x dx f x dx x dx x dx

π π π π π

π π
= + = +
 
 
 
 
  

It can be shown that 

( ) ( )2 3 2

0 2
sin 1 and cos 2,x dx x dx

π π

π
= = −
 
  

once we have developed the necessary tools in Section 5.3. Therefore, 

( )3 2

0
1 2 1.f x dx

π
= − = −
  

Thus, the signed area of the region between the graph of f and the 

interval [0, 2π] is −1. � 

2 π
x

1

1
y

3 π

2

π
π

2
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The Precise Definition of the Integral 

We quantify the expressions “with desired accuracy” and “sufficiently 

small” that appear in the informal definition of the integral (Definition 2): 

Definition 3 We say that a function f is Riemann integrable on the 
interval [a, b] and that the Riemann integral of f on [a, b] is 

( )
b

a
f x dx
  

if, given any � > 0 there exists � > 0 such that 

( ) ( )*

1

,
n b

k k a
k

f x x f x dxΔ ε
=

− <� 
  

where P = {x0, x1, x2, . . . , xn} is a partition of [a, b], [ ]*

1,k k kx x x−∈ , �xk 

= xk − xk−1 for k = 1, 2, . . . , n, and 

max .kk
P xΔ δ= <  

You may think of � > 0 as an arbitrary “error tolerance” that is as 

small as desired. The positive � that is referred to in the definition 

depends on �, and must be sufficiently small so that the absolute value 

of the error in the approximation of the integral by any Riemann sum 

( )*

1

n

k k
k

f x xΔ
=
�  

is smaller than �, provided that �P� < �. We should emphasize that 

there is complete freedom in the choice of the partition P and the choice 

of the intermediate points *

kx , as long as �P� < �. 

 
Remark 3 There are functions that are not Riemann integrable. For 

example, set 

( )
1 if  is rational,

0 if  is irrational.

x
f x

x
�

= �
�
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We claim that f is not Riemann integrable on [0, 1]: 

Let’s set 

, 0,1, 2, , ,k
k

x k n
n

= = �  

so that �xk = 1/n, k = 1, 2, . . . , n, and 

{ } { }0 1 2

1 2
, , , , 1, , , ,1 .n nP x x x x

n n
= =� �  

If each *

kx  is rational, 

( ) ( )*

1 1

1 1
1 1.

n n

k k
k k

f x x n
n n

Δ
= =

� � � �= = =� � � �
� � � �

� �  

If each *

kx  is irrational, 

( ) ( )*

1 1

0 0.
n n

k k k
k k

f x x xΔ Δ
= =

= =� �  

It can be shown that there are rational and irrational numbers in any 

interval, however small it may be. Since �Pn� = 1/n, and limn�∞ 1/n = 0, 

we can find partitions of arbitrarily small norm and corresponding 

Riemann sums that are 1 or 0. Therefore, we cannot assert that there is a 

definite number that is approximated by any Riemann sum with desired 

accuracy, provided that the norm of the relevant partition is small enough. 

This rules out the existence of the integral of the function. ◊ 
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CHAPTER 3 

Introduction to the 
Fundamental Theorem of 

Calculus 

The Fundamental Theorem of Calculus (Part 1) 

The first part of the Fundamental Theorem of Calculus states that the 

integral of the derivative of a function on an interval is equal to  
the difference between the values of the function at the endpoints of 
the interval: 
 
Theorem 1 (THE FUNDAMENTAL THEOREM OF CALCULUS 
(Part 1)) Assume that F� is continuous on [a, b] Then 

( ) ( ) ( ).
b

a
F x dx F b F a′ = −
  

F� (a) and F� (b) can be interpreted as the one sided derivatives  

F�+ (a) and F�− (b), respectively. 

The Proof of Theorem 1 

Let P = {x0, x1, . . . , xk−1, xk, . . . , xn−1, xn} be a partition of [a, b], so that 

x0 = a and xn = b. We can express the change in the value of F over the 

interval [a, b] as the sum of the changes in the value of F over the 

subintervals determined by P: 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0

1 1 2

2 1 1 0

1

1

.

n

n n n n

n

k k
k

F b F a F x F x

F x F x F x F x

F x F x F x F x

F x F x

− − −

−
=

− = −

= − + − +	 
 	 
� � � �
+ − + −	 
	 
� � � �

= −	 
� ��

�
 

By the Mean Value Theorem (Theorem 3 of Section 3.2), there 

exists ( )*

1,k k kx x x−∈  such that 

( ) ( ) ( )( ) ( )* *

1 1 .k k k k k k kF x F x F x x x F x xΔ− −′ ′− = − =  

Therefore, 

( ) ( ) ( )*

1

.
n

k k
k

F b F a F x xΔ
=

′− =�  

We have 

( ) ( )*

1

n b

k k a
k

F x x F x dxΔ
=

′ ′≅� 
  

if �P� = maxk �xk is small, and the approximation is as accurate as 

desired if �P� is small enough. Therefore, 

( ) ( ) ( ) ,
b

a
F b F a F x dx′− ≅ 
  

and 

( ) ( )( ) ( )b

a
F b F a F x dx′− − 
  

is as small as desired. This means that the numbers 

( ) ( ) ( )b
'

a
 and F b F a F x dx− 
  

are equal. � 
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We may refer to the first part of the Fundamental Theorem of 

Calculus simply as “the Fundamental Theorem of Calculus” or “the 

Fundamental Theorem”, until we introduce the second part of the 

Fundamental Theorem and a distinction is necessary. 

 
Example 1 Let 

( ) 3 22
.

3
F x x=  

By the power rule, 

( ) 3 2 3 2 1 22 2 2 3

3 3 3 2

d d
F x x x x x

dx dx
� � � �′ = = = =� � � �
� � � �

 

if x ≥ 0 (we have to interpret F� (0) as F�+ (0)). Thus, F� is continuous on 

[0, 1], so that the Fundamental Theorem of Calculus is applicable on 

[0, 1]. Therefore, 

( ) ( ) ( )
1 1

0 0

2
1 0 .

3
xdx F x dx F F′= = − =
 
  

Thus, the area of the region between the graph of y x=  and the 

interval [0, 1] is 2/3. The region is illustrated in Figure 1. � 

 

Figure 1: 
1

0

2

3
x =
  

Example 2 Evaluate 

( )4
2

0
cos

d
x dx

dx
π


  

  

1 2
x

1

y
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Solution 

If we set F (x) = cos (x2), we have 

( ) ( ) ( )

( )

4 4
2

0 0
cos 0

4

2
cos cos 0 1,

4 2

d d
x dx F x dx F F

dx dx
π π π

π

� �
= = −� �

� �

� �= − = −� �
� �


 

 

by Theorem 1. 

Note that 

( ) ( ) ( )2 2cos 2 sin ,
d

f x x x x
dx

= = −  

and we have ( ) 0 if 0 4f x x π≤ ≤ ≤ . Thus, the area of the region 

G between the graph of f and the interval 0, 4π	 
� �  is 

( ) ( )4 4
2

0 0

2
cos 1 .

2

d
f x dx x dx

dx
π π

− = − = −
 
  

Figure 2 shows the region G. � 

 

Figure 2 

We were able to compute the integrals in the above examples by 

expressing the integrand as the derivative of a familiar function. We will 

use this procedure to compute many integrals: 

Corollary (Corollary to the Fundamental Theorem of Calculus) 
Assume that f is continuous on [a, b] and that F� (x) = f (x) for each 

[ , ]x a b∈ . Then 

( ) ( ) ( ) .
b

a
f x dx F b F a= −
  

2 2
x

22

y

π 4
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Proof 
By the Fundamental Theorem of Calculus (Part 1), 

( ) ( ) ( ) ( )b b

a a
f x dx F x dx F b F a′= = −
 
  

� 

As in Theorem 1, F� (a) and F� (b) can be interpreted as the one 

sided derivatives F�+ (a) and F�− (b), respectively. 

We may refer to the corollary to the Fundamental Theorem of 

Calculus simply as “the Fundamental Theorem of Calculus”. 

Definition 1 A function F is an antiderivative of f on an interval J if 
F� (x) = f (x) for each x in J. 

The derivative should be interpreted as the appropriate one-sided 

derivative at an endpoint of the relevant interval. 

We will denote F (b) − F(a) as 

( ) .b
aF x  

Thus, we can express the Corollary to the Fundamental Theorem of 

Calculus as follows: 

( ) ( )
b b

aa
f x dx F x=
  

if F is an antiderivative of f on [a, b]. 

 
Example 3 Evaluate 

9

4
.xdx
  

Solution 

With reference to Example 1, if 

( ) ( ) 3 22
and ,

3
f x x F x x= =  

then F is an antiderivative of f on the interval [0, +∞), since 

( ) ( )F x f x′ =  
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for each (0, ),x ∈ +∞  and F�+ (0) = f (0). 

Therefore, 

( ) ( )
9

9 3 2 3 2 3 2

4
4

2 2 2 38
9 4 27 8 .

3 3 3 8
xdx x= = − = − =
  

� 

We have been referring to “an antiderivative of a function”. Indeed, 

a function has infinitely many antiderivatives. On the other hand, any 

two antiderivatives of the same function can differ at most by an 

additive constant: 

 
Proposition 1 Let F be an antiderivative of f on the interval J. 
a) If C is a constant, then F + C is also an antiderivative of f on J. 
b) If G is any antiderivative of f on the interval J, there exists a 

constant C such that G (x) = F (x) + C for each x in J. 

 
Proof 
a) Since F is an antiderivative of f on J, we have 

( ) ( ) for each .
d

F x f x x J
dx

= ∈  

If C is an arbitrary constant, 

( )( ) ( ) ( ) ( ) ( )0
d d d

F x C F x C f x f x
dx dx dx

+ = + = + =  

for each x in J. Therefore, F + C is also an antiderivative of f on the 

interval J. 
b) Since F and G are antiderivatives of f on the interval J, we have 

( ) ( ) ( ) ( )=  and 
d d

F x f x G x f x
dx dx

=  

for each x J∈ . Therefore, there exists a constant C such that G(x) = 

F (x) + C for all x in J (Corollary to Theorem 5 of Section 3.2). � 

www.EngineeringEBooksPdf.com



 INTRODUCTION TO THE FUNDAMENTAL THEOREM OF CALCULUS 41 

 

By Proposition 1, if F is an antiderivative of f, we can express any 

antiderivative of f as F + C, where C is a constant. We will use the 

notation 

( )f x dx
  

to denote any antiderivative of f and refer to 

( )f x dx
  

as the indefinite integral of f. Thus, 

( ) ( ) .f x dx F x C= +
  

Example 4 If 

( ) 31

3
F x x=  

and f (x) = x2, then F is an antiderivative of f (on the entire number 

line), since 

( )3 2 21 1
3

3 3

d
x x x

dx
� � = =� �
� �

 

for each .x R∈  Therefore, we can express the indefinite integral of f as 

2 31
,

3
x dx x C= +
  

where C is an arbitrary constant. � 

 
Remark 1 (Caution) We may refer to an integral 

( )b

a
f x dx
  

as a definite integral, if we feel the need to make a distinction between 

an integral and an indefinite integral. In spite of the similarities between 

the terminology and the notation, the indefinite integral of f and the 
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integral of f on an interval [a, b] are distinct entities. The (definite) 

integral 

( )
b

a
f x dx
  

is a number that can be approximated with arbitrary accuracy by 

Riemann sums, whereas, the indefinite integral 

( )f x dx
  

represents any function whose derivative is equal to the function f. In 

either case, we will refer to f as the integrand. The Fundamental 

Theorem establishes a link between a definite integral and an indefinite 

integral: 

( ) ( ) .
b x b

x aa
f x dx f x =

==
 
  

◊ 

 
Example 5 Let C denote an arbitrary constant. Show that the statements 

( ) ( ) ( )22 sin cos sinx x dx x C= +
  

and 

( ) ( ) ( )22 sin cos cosx x dx x C= − +
  

are both correct. 

 
Solution 

We have 

( ) ( ) ( )2sin 2 sin cos
d

x x x
dx

=  

and 
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( )( ) ( ) ( )( ) ( ) ( )2cos 2 cos sin 2 sin cos
d

x x x x x
dx

− = − − =  

for each .x ∈�  Therefore, both sin2 (x) and − cos2 (x) are 

antiderivatives for 2 sin (x) cos (x). Therefore, we can express the 

indefinite integral of 2 sin (x) cos (x) as 

( ) ( ) ( )22 sin cos sinx x dx x C= +
  

or 

( ) ( ) ( )22 sin cos cos ,x x dx x C= − +
  

where C denotes an arbitrary constant. 

Since sin2 (x) and − cos2 (x) are antiderivatives of the same function, 

they must differ by a constant. Indeed, 

( ) ( )( ) ( ) ( )2 2 2 2sin cos sin cos 1x x x x− − = + =  

for all .x ∈�  � 

 
Remark 2 We should be able to use any antiderivative of the integrand 

in order to evaluate an integral. Indeed, if 

( ) ( ) ( ) ( ) and 
d d

F x f x G x f x
dx dx

= =  

for each x in some interval J, there exists a constant C such that G(x) – F 
(x) = C for each .x J∈  Therefore, 

( ) ( ) ( ) ( ),b x b
x aa

f x dx F x F b F a=
== = −
  

and 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ).
b x b

x aa
f x dx G x G b G a F b C F a C F b F a=

== = − = + − + = −
  

Therefore, we do not have to include an arbitrary constant in the 

expression for an indefinite integral when we use the indefinite integral 

to evaluate a definite integral. ◊ 
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Example 6 With reference to Example 5, 

( ) ( ) ( )
2

2 22

2
4

1 1 1
2sin cos sin 1 1 .

2 22
x x dx x

π π
ππ

� �= = − = − =� �
� �
  

We also have 

( ) ( ) ( )
2

2 22

2
4

1 1
2sin cos cos (0) .

22
x x dx x

π π
ππ

� �= − = + =� �
� �
  

� 

The Indefinite Integrals of Basic Functions 

We will refer to the determination of the antiderivatives of functions as 

antidifferentiation. Traditionally, the term “integration” is also used 

instead of the term “antidifferentiation”, even though we should make a 

distinction between integrals and antiderivatives. The particular context 

in which the terms are used should clarify the intended meaning. 

Antidifferentiation is not as straightforward as differentiation. 

Computer algebra systems are very helpful in finding the indefinite 

integrals of many functions. On the other hand, it is convenient to have 

the indefinite integrals of frequently encountered functions at your 

fingertips. Let’s begin with a short list of indefinite integrals. You will 

learn about some rules of antidifferentiation in the rest of this chapter 

and in the next chapter. These rules will enable you to expand the scope 

of this short list considerably. The letter C denotes an arbitrary constant. 

A Short List of Antiderivatives 

 1. 
1

, 1
1

r
r x

x dx C r
r

+

= + ≠ −
+
  (if xr is defined) 

 2. ( )1
lndx x C

x
= +
  (on any interval that does not contain 0) 

 3. ( ) ( )1
sin cosx dx x Cω ω

ω
= +
  (� is a nonzero constant) 
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 4. ( ) ( )1
cos sinx dx x Cω

ω
= +
  (� is a nonzero constant) 

 5. 
x xe dx e C= +
  

 6. ( )
1

,
ln

x xa dx a C
a

= +
  where a > 0 

 7. ( ) ( )sinh coshx dx x C= +
  

 8. ( ) ( )cosh sinhx dx x C= +
  

 9. ( )
2

1
arctan

1
dx x C

x
= +

+
  

 

By the definition of the indefinite integral, each formula is 

confirmed by differentiation. 

 

 1. Let J be an interval that is contained in the natural domain of xr. By 

the power rule, 

( ) ( )
1

11 1
1

1 1 1

r
r r rd x d

x r x x
dx r r dx r

+
+� �

= = + =� �+ + +� �
 

for each x in J (the derivative may have to be interpreted as a one-

sided derivative at 0). Therefore, 

1

1

r
r x

x dx C
r

+

= +
+
  

on the interval J. We will refer to the above antidifferentiation rule 

as the reverse power rule since it is a consequence of the power rule 

for differentiation. 

 2. If x > 0, 

( ) ( ) 1
ln ln .

d d
x x

dx dx x
= =  

If x < 0, 

( ) ( ) ( ) ( ) ( )1 1
ln ln ln 1 ,

u x

d d d d
x x u x

dx dx du dx x x=−

� �� � � �= − = − = − =� � � �� � −� � � �� �
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with the help of the chain rule. 

Therefore, 

( )1
lndx x C

x
= +
  

on any interval that does not contain 0. 

Figure 3 shows the graph of y = ln (|x|). Note that ln (|x|) defines an 

even function, so that the graph of the function is symmetric with 

respect to the vertical axis. Also note that 

( ) ( )
0 0

lim ln lim ln .
x x

x x
→ − → +

= = −∞  

 

Figure 3: y = ln (|x|) 

Formulas 3 - 9 are equivalent to the following differentiation 

formulas, respectively: 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )

( )
2

1
cos sin ,

1
sin cos ,

,

1 1 1
ln ,

ln ln ln

cosh sinh ,

sinh cosh ,

1
arctan ,

1

x x

x x x x

d
x x

dx
d

x x
dx

d
e e

dx
d d

a a a a a
dx a a dx a

d
x x

dx
d

x x
dx

d
x

dx x

ω ω
ω

ω ω
ω

� �− =� �
� �
� � =� �
� �

=

� �
= = =� �

� �

=

=

=
+

 

10 5 5 10
x

1

1

2

y

y ln x
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Example 7 
a) Determine 

2 3x dx
  

by the reverse power rule. Confirm the result by differentiation. 

b) Compute 

27 2 3

8
.x dx

−
  

Interpret the integral as signed area. 

 
Solution 
a) By the reverse power rule, 

2 3 1 5 3
2 3 5 33

,
2 3 1 5 3 5

x x
x dx x C

+

= = = +
+
  

where C is an arbitrary constant. 

We have 

5 3 2 3 2 33 3 5

5 5 3

d
x C x x

dx
� � � �+ = =� � � �
� � � �

 

for each x ∈� . Therefore, the statement 

2 3 5 33

5
x dx x C= +
  

is valid on .�  

b) By the Fundamental Theorem of Calculus, 

( )( ) ( )27 5 32 3 5 3 5 3 5 5

8

3 3 3
27 8 3 2 165.

5 5 5
x dx x

−
= = − − = + =
  

Note that f is continuous on ,�  even though f is not differentiable 

at 0, so that there is no problem about the existence of an integral of 

f, or the application of the Fundamental Theorem. Since x2/3 ≥ 0 for 
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each x, the area of the region between the graph of f (x) = x2/3 and 

the interval [−8, 27] is 165. � 

 

Figure 4: The region between the graph of y = x2/3 and [−8, 27] 

 
Example 8 
a) Determine 

2

1
,dx

x
  

and the intervals on which the expression is valid. 

b) Compute 

1

22

1
.dx

x
−

−
  

Interpret the integral as signed area. 

 
Solution 
a) By the reverse power rule, 

1
2

2

1 1
,

1

x
dx x dx C

x x

−
−= = = − +

−
 
  

where C is an arbitrary constant. The expression 

2

1 1
dx C

x x
= − +
  

is valid on the interval (−∞, 0) and on the interval (0, +∞). 

b) By the Corollary to the Fundamental Theorem of Calculus, 

( ) ( )

1
1

22
2

1 1 1 1 1 1
1 .

1 2 2 2
dx

x x

−
−

−
−

� � � �
= − = − − − = − =� � � �− −� � � �


  

8 27
x

4

9

y
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Since 1/x2 > 0, the area of the region between the graph of f (x) = 

1/x2 and the interval [−2, −1] is 0.5. Figure 5 illustrates the region. � 

 

Figure 5 

Example 9 Since x−2 > 0, the following claim cannot be valid: 

( )
2

2

21
1

1 1 1 3
1 .

2 2
dx

x x−
−

� �= − = − − = −� �
� �
  

Why is the above line incorrect? 

 
Solution 

We have 

2

1 1d
dx x x
� � = −� �
� �

 

if and only if x ≠ 0. But 0 is in the interval [−1, 2], so that the Corollary 

to the Fundamental Theorem of Calculus (Corollary) cannot be applied 

as indicated above. � 

 
Example 10 Evaluate 

2

4

1
.dx

x
−

−
  

Solution 

Since 

( )1
ln ,dx x C

x
= +
  

  

2 1 1 2
x

5

10
y
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on any interval contained in (−∞, 0) or (0, +∞), and [−4, −2] is 

contained in (−∞, 0), we can use the above indefinite integral to 

evaluate the given definite integral. By the Fundamental Theorem of 

Calculus, 

( ) ( ) ( ) ( ) ( )
2

2

4
4

1
. ln ln 2 ln 4 ln 2 ln 4 0.693147dx x

x
− −

−−
= = − − − = − ≅ −
  

Thus, the signed area of the region between the graph of the 

function defined by 1/x and the interval [−4, −2] is ln (2) − ln(4). The 

region is illustrated in Figure 6. � 

 

Figure 6 

 
Remark 3 (Caution) We must be careful with the use of the 

antidifferentiation formula, 

( )1
ln .dx x C

x
= +
  

For example, we might be tempted to write, 

( ) ( ) ( )3
3

2
2

1
ln ln 3 ln 2 .dx x

x −−
= = −
  

The above statement is not valid since it is not true that 

( ) 1
ln

d
x

dx x
=  

at 0, and 0 ( 2,3)∈ − . ◊ 

  

4 2 2 4
x

4

2

2

4

y
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Example 11 Evaluate 

( )ln 10

0
.xe dx
  

Solution 

We have 

,x xe dx e C= +
  

where C is an arbitrary constant. By the Fundamental Theorem of 

Calculus, 

( ) ( )( )ln 10 ln 10 ln 10 0

0
0

10 1 9.x x
xe dx e e e== = − = − =
  

Thus, the area of the region between the graph of the natural 

exponential function and the interval [0, ln(10)] is 9. Figure 7 illustrates 

the region. � 

 
Figure 7 

Example 12 Confirm the following claims that were made in Example 4 

of Section 5.2: 

( ) ( )
4 3

0

1
sin 2 and sin .

2
x dx x dx

π π

π
= = −
 
  

 
Solution 

We have 

( ) ( )sin cos ,x dx x C= − +
  

1 1
x

10

20

y

ln 10
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where C denotes an arbitrary constant, as usual. By the Fundamental 

Theorem of Calculus, 

( ) ( ) ( ) ( )( )0
0

sin cos cos cos 0 1 1 2,x dx x
π π π= − = − − − = + =
  

and 

( ) ( ) ( )( )4 3 4 3 4 1 1
sin cos cos cos 1 .

3 2 2
x dx x

π π
ππ

π π� � � �= − = − − − = − − − = −� � � �
� � � �
  

� 

The Fundamental Theorem of  
Calculus and One-Dimensional Motion 

Let’s interpret the Fundamental Theorem of Calculus within the 

context of one-dimensional motion. Assume that f (t) is the position at 

time t of an object in one dimensional motion, and let v (t) be its 

instantaneous velocity at time t, so that v (t) = f � (t). Also assume that v 

is continuous on [a, b]. By the Fundamental Theorem of Calculus, 

( ) ( ) ( ) ( ) .
b b

a a
t dt f t dt f b f aυ ′= = −
 
  

We will refer to the change in the position of the object over the time 

time interval [a, b] as the displacement of the object over that time 

interval. Thus, the displacement of the object over the time interval  

[a, b] is equal to the integral of the velocity function on [a, b]. 
Even though the above fact is a direct consequence of the 

Fundamental Theorem of Calculus, it is helpful to interpret the proof of 

the theorem within the context of one-dimensional motion. If P = {t0, t1, 

t2, . . . , tn−1, tn} is a partition of [a, b], so that t0 = a and tn = b, we can 

express the displacement over [a, b] as the sum of the displacements over 

the subintervals. Thus, 

www.EngineeringEBooksPdf.com



 INTRODUCTION TO THE FUNDAMENTAL THEOREM OF CALCULUS 53 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ))

( ) ( ) ( ) ( )

( ) ( )

0

1 1 2

2 1 1 0

1

1

.

n

n n n n

n

k k
k

f b f a f t f t

f t f t f t f t

f t f t f t f t

f t f t

− − −

−
=

− = −

	 
= − + − +	 
� � � �
+ − + −	 
	 
� � � �

= −	 
� ��

�
 

By the Mean Value Theorem, there exists ( )*

1,k k kt t t−∈ −  such that 

( ) ( ) ( )( ) ( )* *

1 1 .k k k k k k kf t f t f t t t t tυ Δ− −′− = − =  

Therefore, 

Displacement over ( ) ( ) ( )*

1

1 1

, .
n n

k k k k
k k

a b f t f t t tυ Δ−
= =

	 
 = − =	 
� �� � � �  

Since 

( ) ( )*

1

n b

k k a
k

t t t dtυ Δ υ
=

≅� 
  

if �P� is small, and the approximation is as accurate as desired provided 

that �P� is small enough, 

( )Displacement over ,
b

a
a b t dtυ	 
 −� � 
  

is arbitrarily small. This is the case if and only if 

[ ] ( )Displacement over , .
b

a
a b t dtυ= 
  

In particular the units match. For example, if distance is measured in 

centimeters and time is measured in seconds, velocity is expressed in 

terms of centimeters per second. This is consistent with the fact that 

( ) ( )*

1

Displacement over , .
nb

k ka
k

a b t dt t tυ υ Δ
=

	 
 = ≅� � �
  

Indeed, the unit of ( )*

k kt tυ Δ  is 

centimeter
second = centimeter.

second
×  

www.EngineeringEBooksPdf.com



54 INTRODUCTORY CALCULUS: UNDERSTANDING THE INTEGRAL 

 

Graphically, the displacement of the object over the time interval  

[a, b] is the signed area of the region between the graph of the velocity 

function and the interval [a, b]. We must distinguish between the 

displacement of an object over a time interval and the distance traveled 

by the object over the same time interval. If v (t) ≤ 0 for each [ , ]t a b∈ , 

the object is moving in the negative direction over the time interval  

[a, b]. Therefore, the distance traveled is 

( ) .
b

a
t dtυ−
  

More generally, if we wish to calculate the distance traveled by an 

object over the time interval [a, b], we need to determine the 

subintervals of [a, b] on which the velocity has constant sign. If the 

velocity is negative over a subinterval, the relevant integral must be 

multiplied by (−1). Graphically, the distance traveled over the time 

interval [a, b] is the area between the graph of the velocity function and 

the interval [a, b]. 

 
Example 13 With the above notation, assume that an object that is 

attached to a spring has velocity v (t) = cos (2t). 
a) Sketch the graph of the velocity function on [0, π]. 

b) Determine the displacement of the object over the time interval  

[0, 3π/4]. 

c) Determine the distance traveled by the object over the time interval 

[0, 3π/4]. 

 
Solution 
a) Figure 8 shows the graph of the velocity function on [0, π]. 

 

Figure 8 

π
x

1

1
y

π

4

3 π

4

www.EngineeringEBooksPdf.com



 INTRODUCTION TO THE FUNDAMENTAL THEOREM OF CALCULUS 55 

 

b) Since 

( ) ( )1
cos sin ,t dt t Cω ω

ω
= +
  

for any � ≠ 0, we have 

( ) ( )1
cos 2 sin 2 .

2
t dt t C= +
  

Therefore, the displacement of the object over the time interval  

[0, 3π/4] is 

( ) ( ) ( )

( )

3 4
3 4 3 4

0 0
0

1
cos 2 sin 2

2

1 3 1 1
sin sin 0

2 2 2 2

t dt t dt t
π

π π
υ

π

= =

� �= − = −� �
� �


 

 

(centimeters). 

c) We see that v (t) > 0 if 0 < t < π/4 and v (t) < 0 if π/4 < t < 3π/4. 

Thus, the object is moving in the positive direction over the time 

interval [0, π/4] and in the negative direction over the time interval 

[π/4, 3π/4]. We have 

( ) ( ) ( )
4

4

0
0

1 1 1 1
sin 2 sin sin 0 ,

2 2 2 2 2
t dt t

π
π πυ � �= = − =� �

� �
  

and 

( ) ( )
3 4

3 4

4
4

1 1 3 1 1 1
sin 2 sin sin 1.

2 2 2 2 2 2 2
t dt t

π
π

π
π

π πυ � � � �= = − = − − = −� � � �
� � � �
  

Therefore, total distance traveled is 

( ) ( ) ( )
4 3 4

0 4

1 1
1

2 2
t dt t dt

π π

π
υ υ− = − − =
 
  

(centimeters). Graphically, the distance traveled is the area of the 

region between the velocity function and the interval [0, 3π/4]. � 
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CHAPTER 4 

The Antiderivative  
and the Fundamental 
Theorem of Calculus 

The second part of the Fundamental Theorem of Calculus shows that 

every continuous function has an antiderivative, even though such an 

antiderivative may not be expressible in terms of familiar functions. The 

theorem leads to the definition of new special functions. 

Some Properties of the Integral 

In preparation for the second part of the Fundamental Theorem of Cal-

culus, we will discuss some general facts about the integral that will be 

useful in other contexts as well. 

Proposition 1 Assume that f and g are continuous on the interval [a, b] 
and f (x) � g(x) for each [ , ].x a b∈  Then 

( ) ( ) .
b b

a a
f x dx g x dx≤
 
  

Figure 1 illustrates the graphical meaning of Proposition 1 if 0 ≤ f (x) <  

g (x) for each [ , ]x a b∈ : The area of the region between the graph of f and 

the interval [a, b] is less than the area of the region between the graph of  

g and [a, b]. 

 

Figure 1 

x

y

f

g

a b
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We will leave the rigorous proof of Proposition 1 to a course in ad-

vanced calculus. Let’s provide a plausibility argument: 

Let P = {x0, x1, . . . , xn−1, xn} be a partition of [a, b] and 

[ ]*

1, , 1,2, , .k k kx x x k n−∈ = �  We have 

( ) ( )Δ Δ
= =

≤� �* *

1 1

,
n n

k k k k
k k

f x x g x x  

since f (x) ≤ g (x) for each [ , ].x a b∈  Since 

( ) ( ) ( ) ( )* *

1 1

and ,
n nb b

k k k ka a
k k

x f x x f x dx g x x g x dxΔ Δ
= =

≅ ≅� �
 
  

if ||P|| = maxk �xk is small, it is plausible that 

( ) ( ) .
b b

a a
f x dx g x dx≤
 
  

� 

Corollary 1 (The Triangle Inequality for Integrals) Assume 
that f is continuous on [a, b]. Then 

( ) ( )≤
 
 .
b b

a a
f x dx f x dx  

Proof 
It can be shown that | f | is continuous on [a, b] if f is continuous on 

[a, b]. We have 

( ) ( ) ( )f x f x f x− ≤ ≤  

for each [ , ]x a b∈ . By Proposition 1, 

( ) ( ) ( ) .
b b b

a a a
f x dx f x dx f x dx− ≤ ≤
 
 
  

By the constant multiple rule for integrals, 

( ) ( ) .
b b

a a
f x dx f x dx− = −
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Therefore, 

( ) ( ) ( ) .
b b b

a a a
f x dx f x dx f x dx− ≤ ≤
 
 
  

The above inequalities imply that 

( ) ( ) .
b b

a a
f x dx f x dx≤
 
  

� 

We have dubbed the Corollary 1 as “the triangle inequality for in-
tegrals”, since we can view the inequality 

( ) ( )b b

a a
f x dx f x dx≤
 
  

as a generalization of the triangle inequality for numbers. Indeed, if  

P = {x0, x1, . . . , xn−1, xn} is a partition of [a, b] and [ ]*

1,k k kx x x−∈  for  

k = 1, 2, . . . , n, we have 

( ) ( )* *

1 1

n n

k k k k
k k

f x x f x xΔ Δ
= =

≤� �  

by the triangle inequality for numbers. If �P� = maxk �xk is small, 

( ) ( )*

1

n b

k k a
k

f x x f x dxΔ
=

≅� 
  

and 

( ) ( )*

1

.
n b

k k a
k

f x x f x dxΔ
=

≅� 
  

Therefore, the inequality 

( ) ( )b b

a a
f x dx f x dx≤
 
  

is not surprising. 
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Definition 1 The mean value (or the average value) of a continuous 

function f on the interval [a, b] is 

( )1
.

b

a
f x dx

b a− 
  

Thus, the mean value of f on [a, b] is the ratio of the integral of f on 

[a, b] and the length of the interval [a, b]. 

The terminology of Definition 1 is reasonable. Indeed, if 

Δ Δ= + =, , 1,2, , ,�k
b a

x x a k x k n
n
−=  

then 

( ) ( )Δ
=

≅� 

1

n b

k a
k

f x x f x dx  

if �x is small, i.e., n is large. Therefore, 

( ) ( )Δ
=

≅
− −� 


1

1 1
.

n b

k a
k

f x x f x dx
b a b a

 

We have 

( ) ( ) ( )Δ
= = =

−� �= =� �− − � �
� � �

1 1 1

1 1 1
.

n n n

k k k
k k k

b a
f x x f x f x

b a b a n n
 

Therefore, 

( ) ( )
=

≅
−� 


1

1 1n b

k a
k

f x f x dx
n b a

 

if n is large. The quantity 

( )
=
�

1

1 n

k
k

f x
n

 

is the mean of the values of the function at the points xk, k = 1, 2, . . . , n. 
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A Continuous function attains its mean value on an interval: 
Theorem 1 (THE MEAN VALUE THEOREM FOR INTEGRALS) 
Assume that f is continuous on [a, b]. There exists [ , ]c a b∈  such that 

( ) ( )1
.

b

a
f c f x dx

b a
=

− 
  

Proof 
Let m and M be the minimum and the maximum value of f on [a, b], 

respectively. Since 

( )m f x M≤ ≤  

for each [ , ]x a b∈ , we have 

( ) ,
b b b

a a a
mdx f x dx M dx≤ ≤
 
 
  

by Proposition 1. Therefore, 

( ) ( ) ( ).
b

a
m b a f x dx M b a− ≤ ≤ −
  

Thus, 

( )1
.

b

a
m f x dx M

b a
≤ ≤

− 
  

By the Intermediate Value Theorem for continuous functions  

(Theorem 1 of Section 2.9), there exists [ , ]c a b∈  such that 

( ) ( )1
.

b

a
f c f x dx

b a
=

− 
  

� 

Since 

( ) ( ) ( )( ) ( )1
,

b b

a a
f c f x dx f c b a f x dx

b a
= � − =

− 
 
  

  

www.EngineeringEBooksPdf.com



62 INTRODUCTORY CALCULUS: UNDERSTANDING THE INTEGRAL 

we can interpret the Mean Value Theorem for Integrals in the case of a 

positive-valued function f graphically: The area of the region between 

the graph of f and the interval [a, b] is the same as the area of a rectangle 

that has as its base the interval [a, b] and has height equal to the value of 

f at some c in [a, b], as illustrated in Figure 2. 

 

Figure 2 

An integral is multiplied by (−1) if the upper and lower limits are in-

terchanged: 

Definition 2 Assume that a < b. We define 

( ) ( ) .
a b

b a
f x dx f x dx= −
 
  

Remark 1 If F is an antiderivative of f, we have 

( ) ( ) ( ) ( )( ) ( ) ( ).
a b

b a
f x dx f x dx F b F a F a F b= − = − − = −
 
  

Therefore, 

( ) ( ) ,
a a

bb
f x dx F x=
  

just as 

( ) ( ) .
b b

aa
f x dx F x=
  

Thus, we need not pay attention to the positions of a and b on the 

number line relative to each other, when we make use of the Fundamen-

tal Theorem to evaluate the integral. ◊ 

  

x

y

a bc

f

y f c
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Remark 2 By Definition 2, if v(t) is the velocity at time t of an object in 

one-dimensional motion, and f is the corresponding position function, 
we have 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )υ υ ′= − = − = − − = −
 
 
 .
a b b

b a a
t dt t dt f t dt f b f a f a f b  

Thus, if we imagine that time flows backwards from b to a, the inte-

gral of the velocity function from b to a is still the change in the posi-

tion function. ◊ 

Example 1 Determine 

( )0

2
cos .x dx

π
  

Solution 

By Definition 2, 

( ) ( ) ( )( )
( )( ) ( )

0 2 2

02 0

2

0

cos cos cos

sin sin sin 0 1.
2

x

x
x dx x dx x dx

x

π π

π

π π

=

=
= − = −

� �� �= − = − − = −� �� �� �� �


 
 

 

We can obtain the same result as follows: 

( ) ( ) ( )
0 0

22
cos sin sin 0 sin 1.

2
x dx x ππ

π� �= = − = −� �
� �
  

� 

We define an integral that has the same lower and upper limits to be 0: 

Definition 3 

( ) 0.
a

a
f x dx =
  

The following argument suggests that the above definition is reasonable: 

Assume that f is continuous in some open interval that contains the 

point a and that |f (x)| ≤ M for each x in that interval. If the positive 

integer n is large enough, 

( ) ( )
1 1 1

1 1 1

2
,

a n a n a n

a n a n a n
f x dx f x dx Mdx M

n
+ + +

− − −

� �≤ ≤ = � �
� �
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with the help of the triangle inequality for integrals. Therefore, 

( )
1

1
lim 0.

a n

a nn
f x dx

+

−→∞
=
  

Thus, it is natural to set 

( ) ( )
1

1
lim 0.

a a n

a a nn
f x dx f x dx

+

−→∞
= =
 
  

� 

The above definitions enable us to express the generalized version of 

the additivity of the integral with respect to intervals: 
Theorem 2 If f is continuous on an interval that contains the points 

a, b and c, we have 

( ) ( ) ( ) .
b c c

a b a
f x dx f x dx f x dx+ =
 
 
  

Proof 
We know that the statement of Thorem 2 is valid if a < b < c. As-

sume that a < c < b. Then, 

( ) ( ) ( ) .
c b b

a c a
f x dx f x dx f x dx+ =
 
 
  

Therefore, 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ,

c b b b c

a a c a b

b c

a b

f x dx f x dx f x dx f x dx f x dx

f x dx f x dx

= − = − −

= +


 
 
 
 



 

 

as claimed. 

Let’s consider the case a = b < c. Then, 

( ) ( ) ( ) ( ) ( ) ( )+ = + = + =
 
 
 
 
 
0 .
b c a c c c

a b a a a a
f x dx f x dx f x dx f x dx f x dx f x dx  

Other cases are handled in a similar fashion. � 
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The Second Part of the Fundamental Theorem 

We will define functions via integrals. Assume that f is continuous on an 

interval J that contains the point a. Let us set 

( ) ( ) ,
x

a
F x f t dt= −
  

for each .x J∈  Note that the upper limit of the integral is the variable 

x, and we used the letter t to denote the “dummy” integration variable 

(we could have used any letter other than x). If x > a, then F (x) is the 

signed area of the region between the graph of f and the interval [a, x], 

as illustrated in Figure 3. 

 

Figure 3: ( ) ( ) ,
x

a
F x f t dt= −
  

If x < a, we have 

( ) ( )a

x
F x f x dx= −
  

so that F (x) is (−1) times the signed area of the region between the 

graph of f and the interval [a, x], as illustrated in Figure 4. 

 

Figure 4: ( ) ( )
a

x
F x f x dx= −
  

y

a x

y f t

t

y

a
x

y f t

t
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Note that 

( ) ( ) 0.
a

a
F a f t dt= =
  

Example 2 Set 

( ) 2

2
.

x
F x t dt= 
  

a) Determine F (x), F(3) and F(1). 

b) Interpret the meaning of F (x) graphically. Sketch the graph of F. 
c) Determine F � (x). 

Solution 
a) By the reverse power rule, 

3
2 ,

3

t
t dt C= +
  

where C is an arbitrary constant. Therefore, 

( )
3 3 3

2 3

2
2

2 1 8
.

3 3 3 3 3

x
x t x

F x t dt x= = = − = −
  

In particular, 

( ) ( )3 1
2 2

2 2

19 7
3  and 1 .

3 3
F t dt F t dt= = = −
 
  

b) We have 

( ) 2
2

2
2 0.F t dt= =
  

If x > 2, then F (x) is the area between the graph of f (t) = t2 and the 

interval [2, x], as illustrated in Figure 5. 

 

Figure 5: ( ) 2

2

x
F x t dt= 
  

4 2 2 4
t

4

8

12

y

y t2

x
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If x < 2, then 

( ) 2
2

x
F x t dt= 
  

Therefore, F (x) is (−1) times the area of the region between the 

graph of f (t) = t2 and the interval [x, 2], as illustrated in Figure 6. 

 

Figure 6: ( ) 2
2 if 2

x
F x t dt x= <
  

Figure 7 shows the graph of F. 

 

Figure 7: ( ) 2

2

x
y F x t dt= = 
  

c) We have 

( ) ( )2 3 2 2

2

1 8 1
3 .

3 3 3

xd d
F x t dt x x x

dx dx
� �′ = = − = =� �
� �
  

Note that x2 is the value of the integrand t2 at t = x. � 

Example 3 Set 

( ) ( )sin .
x

F x t dt
π

= 
  

a) Determine F (x), F (3π/2) and F (π/3). 

2
t

4

8

y

y t2

x

2 1 1 2 3
x

6

4

2

2

4

6

y

y F x
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b) Interpret the meaning of F (x) graphically. Sketch the graph of F on 

the interval [0, 3π]. 

c) Determine F � (x). 

Solution 
a) We have 

( ) ( ) ( ) ( ) ( ) ( )sin cos cos cos cos 1.
x xF x t dt t x xππ

π= = − = − + = − −
  

In particular, 

( ) ( ) ( ) ( )3 2 3 3
3 2 sin 1 and 3 sin .

2
F t dt F t dt

π π

π π
π π= = − = = −
 
  

b) We have 

( ) ( )sin 0.F t dt
π

π
π = =
  

If x > π, F (x) is the signed area of the region between the graph of 

sine and the interval [π, x], as illustrated in Figure 8. 

 

Figure 8: ( ) ( )sin
x

F x t dt
π

= 
  

If x < π, we have 

( ) ( ) ( )sin sin .F x t dt t dt
π π

π π
= = −
 
  

Therefore, F (x) is (−1) times the signed area of the region between 

the graph of sine and the interval [x, π], as illustrated in Figure 9. 

3 π
t

1

1
y

2π xπ
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Figure 9: ( ) ( )sinF x t dt
π

π
= −
  

Figure 10 shows the graph of y = F (x) = − cos (x) − 1 on the interval 

[−2π, 2π]. 

 

Figure 10: y = F (x) = − cos(x) − 1 

c) We have 

( ) ( ) ( )( ) ( )sin cos 1 sin .
xd d

F x t dt x x
dx dxπ

′ = = − − =
  

Note that sin (x) is the value of the integrand sin (t) at t = x. � 

In examples 2 and 3, it turned out that 

( ) ( ).
x

a

d
f t dt f x

dx
=
  

That is a general fact: 

Theorem 3 (The Fundamental Theorem of Calculus, Part 2) Assume 
that f is continuous on the interval J, and a is a given point in J. If 

( ) ( ) ,
x

a
F x f t dt= 
  

then F � (x) = f (x) for each .x J∈   

2 π
t

1

1
y

x
π

2 π π 2 π
x

2

1

1
y
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The derivative should be interpreted as the appropriate one-sided 

derivative at an endpoint of J. 

Remark 3 The second part of the Fundamental Theorem of Calculus 

asserts that 

( ) ( )x

a

d
f t dt f x

dx
=
  

for each x J∈  (provided that f is continuous on J). Therefore, 

( ) ( )
x

a
F x f t dt= 
  

defines an antiderivative of f on J. ◊ 

A Plausibility Argument for Theorem 3: 
We have 

( ) ( ) ( ) ( )( ) .
x x x x x

a a x
F x x F x f t dt f t dt f t dt

Δ Δ
Δ

+ +
+ − = − =
 
 
  

 

Figure 11: ( ) ( )
x x

x
f t dt f x x

Δ
Δ

+
≅
  

With reference to Figure 11, if �x > 0 and small, this quantity is ap-

proximately the area of the rectangle that has as its base the interval  

[x, x + �x] and has height f (x). Therefore 

( ) ( ) ( ) ,F x x F x f x xΔ Δ+ − ≅  

so that 

( ) ( ) ( )F x x F x
f x

x
Δ
Δ

+ −
≅  

a x x x tx

f x
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if �x is small. Thus, it is plausible that 

( ) ( ) ( ) ( )
0

' lim .
x

F x x F x
F x f x

xΔ

Δ
Δ→

+ −
= =  

� 

The Proof of Theorem 3 

We will show that F � (x) = f (x) at a point x in the interior of J. If x is 

an endpoint of J, the equality of the appropriate one-sided derivative of 

F and f (x) is established in a similar manner. 

Let �x > 0. As in our plausibility argument, 

( ) ( ) ( ) .
x x

x
F x x F x f t dt

Δ
Δ

+
+ − = 
  

Therefore, 

( ) ( ) ( )1
.

x x

x

F x x F x
f t dt

x x
ΔΔ

Δ Δ
++ −

= 
  

Thus, the difference quotient is the mean value of f on the interval 

[x, x + �x]. By the Mean Value Theorem for Integrals (Theorem 1), 

there exists a point c (x, �x) in the interval [x, x + �x] such that 

( ) ( )( )1
,

x x

x
f t dt f c x x

x
Δ

Δ
Δ

+
=
  

(we have used the notation “c (x, �x)” in order to indicate that c de-

pends on x and �x). 

Therefore, 

( ) ( ) ( ) ( )( )
0 0

' lim lim , .
x x

F x x F x
F x f c x x

xΔ Δ

Δ
Δ

Δ+ → + → +

+ −
= =  

Since c (x, �x) is between x and x + �x, we have lim�x�0 c (x, �x) = 

x. Since f is continuous at x, 

( )( ) ( )( ) ( )( ) ( )
0 0 0

lim , lim , lim , .
x x x

f c x x f c x x f c x x f x
Δ Δ Δ

Δ Δ Δ
→ + → →

= = =  
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Therefore, 

( ) ( )( ) ( )
0

lim , .
x

F x f c x x f x
Δ

Δ+ → +
′ = =  

If �x < 0 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )Δ Δ

Δ

Δ
Δ Δ Δ Δ

+ +

+

+ −
= = − =

− −
 
 

1 1 1

.
x x x x x

x x x x

F x x F x
f t dt f t dt f t dt

x x x x
 

The final expression is the mean value of f on the interval [x + �x, x]. 

By the Mean Value Theorem for Integrals, there exists ( , )c x xΔ  

Δ∈ +[ , ]x x x  such that 

( ) ( ) ( )( )1
, .

x

x x
f t dt f c x x

x Δ
Δ

Δ +
=

− 
  

Therefore, 

( ) ( ) ( ) ( )( ) ( )( ) ( )
Δ Δ Δ

Δ
Δ Δ

Δ− → − → − → −

+ −′ = = = =
0 0 0

lim lim , lim , ,
x x x

F x x F x
F x f c x x f c x x f x

x

 

since c (x, �x) is between x + �x and x, and f is continuous at x. 
Thus, 

( ) ( ) ( ) ( ).F x F x F x f x+ −′ ′ ′= = =  

� 

Example 4 (The function erf) Set 

( ) 2

0

2x tF x e dt
π

−= 
  

a) Determine F � (x). 

b) Interpret F (x) in terms of area. 

Solution 
a) By the second part of the Fundamental Theorem of Calculus, 

( ) 2 2

0

2 2x t xd
F x e dt e

dx π π
− −′ = =
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at each ,x ∈�  since 

( ) 22 tf t e
π

−=  

is continuous on .�  

b) If x > 0, F (x) is the area between the graph of f and the interval [0, x], 

as illustrated in Figure 12. 

 

Figure 12: ( ) 2

0

2x tF x e dt
π

−= 
  

If x < 0, 

( ) ( ) ( )0

0
,

x

x
F x f t dt f t dt= = −
 
  

so that F (x) is (−1) × (the area between the graph of f and the interval 

[x, 0]), as illustrated in Figure 13. 

 

Figure 13: ( ) 20 2 t

x
F x e dt

π
−= −
  

The function F is a built-in function in computer algebra systems such 

as Maple or Mathematica, since it occurs in many statistical applications, 

and is referred to as the error function erf. Figure 14 shows the graph of F. 
� 

2 2
t

1

y

x

2 2
t

1

y

x2 2
t

1

y

x
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Figure 14: ( ) 2

0

2
erf

x ty x e dt
π

−= = 
  

Example 5 (The natural logarithm defined as an integral) 
If x > 0, we have 

( ) ( ) ( ) ( )
11

1
ln ln ln 1 ln ,

x x
dt t x x

t
= = − =
  

since 

( ) 1
ln , 0.

d
t t

dt t
= >  

Thus, ln (x) is the area between the graph of y = 1/t and the interval 

[1, x] if x > 1, as illustrated in Figure 15. 

 

Figure 15: ( )
1

1
ln

x
x dt

t
= 
  

If 0 < x < 1, 

so that ln (x) is (−1) × (the area between the graph of y = 1/t and the 

interval [x, 1]), as illustrated in Figure 16. 

4 2 2 4
x

1

1

y

y erf x

2

2

4

y

x1 t

y
1

t
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Figure 16: ( ) 11
ln

x
x dt

t
= −
  

If we didn’t know about the natural logarithm, and needed an anti-

derivative if 1/x, we could have set 

( )
1

1
, 0.

x
F x dt x

t
= >
  

By the second part of the Fundamental Theorem of Calculus, we have 

( )
1

1 1xd
F x dt

dx t x
′ = =
  

for each x > 0, so that F is an antiderivative of the function defined by 

1/x on (0, +∞). Thus, we can introduce the natural logarithm as the 

function F and define the natural exponential function as its inverse. 

This approach enables us to derive all the properties of the natural loga-

rithm and the natural exponential function rigorously. � 

Example 6 The sine integral function Si is defined by the expression 

( )
0

sin
Si( )

x t
x dt

t
= 
  

Determine Si� (x). 

Solution 

Since 

( )
0

sin
lim 1,
t

t
t→

=  

2
t

2

4

y

tx 1

y
1

t

www.EngineeringEBooksPdf.com



76 INTRODUCTORY CALCULUS: UNDERSTANDING THE INTEGRAL 

if we set 

( )
( )sin

if 0,

1 if 0,

t
t

f t t
t

�
≠�

�
� =�

 

then f is continuous on the entire number line. We can interpret the 

integral 

( )
0

sinx t
dt

t
  

as 

( )
0

.
x

f t dt
  

 

Figure 17: 
( )sin t

y
t

=  

Thus, the second part of the Fundamental Theorem of Calculus is 

applicable: 

( ) ( )
( )

0

sin
if 0,

Si

1 if 0.

x
x

xd d
x f t dt x

dx dx x

�
=�= = �

� =�

  

Figure 17 shows the graph of f and Figure 18 shows the graph of the 

sine integral function Si. � 

4 π 2 π 2 π 4 π
t

0.5

1

y
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Figure 18: The sine integral function 

Example 7 Set 

( )
2

20

4
.

1

x t
F x dt

t
−=
+
  

a) Determine F � (x). 

b) Determine the intervals on which F is increasing/decreasing, 

Solution 
a) The integrand is continuous on the entire number line, since it is a 

rational function and t2 + 1 ≠ 0 for any t ∈� . Figure 19 shows the 

graph of the integrand. 

 

Figure 19: 
2

2

4

1

t
y

t
−=
+

 

By the second part of the Fundamental Theorem of Calculus, 

( )
2 2

2 20

4 4
for each .

1 1

xd t x
F x dt x

dx t x
− −′ = = ∈
+ +
 �  

  

4 π 2 π 2 π 4 π
x

1.5

1.5

y

6 4 2 2 4 6
t

4

3

2

1

1
y
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b) We will make of the derivative test for monotonicity. We have 

( )
2

2

4
0 0 2.

1

x
F x x

x
−′ = ⇔ = ⇔ = ±
+

 

We also have F � (x) > 0 if x < −2, F � (x) < 0 if −2 < x < 2 and F � (x) > 0 

if x > 2. Therefore, F is increasing on (−∞, 2], decreasing on [−2, 2] and 

increasing on [2, +∞). 

In the next chapter we will introduce new special functions and we 

will be able to express F (x) in terms of one of these functions. In the 

mean time, you can make use of your computational utility to obtain 

approximates values for F (for example, you can use midpoint sums), 

and plot a graph of F. Figure 20 shows such a graph. 

 

Figure 20: ( )
2

20

4

1

x t
F x dt

t
−=
+
  

Incidentally, 

( ) ( )
2 2

2 2

2 20 0

4 4
2 3.535 74 and 2 3.535 74

1 1

t t
F dt F dt

t t
−− −= ≅ − − = ≅

+ +
 
  

� 

Now that we have established the second part of the Fundamental 

Theorem of Calculus, let us display both parts of the Theorem in a sym-

metric fashion (the restrictions on the functions have been stated earlier): 

The Fundamental Theorem of Calculus 

1.      
( ) ( ) ( ).

x df t
dt f x f a

dtα
= −
  

8 4 4 8
x

4

2

2

4

y
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2.      ( ) ( ) .
xd

f t dt f x
dx α

=
  

It is worthwhile to repeat the meaning of the Fundamental Theorem: 

The first part of the theorem states that the integral of the derivative of 
a function on an interval is the difference between the values of the 
function at the endpoints. The second part of the theorem states that 
the derivative of the function 

( )x

a
f t dt
  

is the value of the integrand at the upper limit. We can say that differ-
entiation and integration are reverse operations in the precise sense of 
the Fundamental Theorem. 

We may refer to either part of the Fundamental Theorem of Calcu-

lus simply as “the Fundamental Theorem of Calculus”. 
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CHAPTER 5 

The Indefinite and  
Definite Integrals of Linear 
Combinations of Functions 

In Chapter 3 we introduced the first part of the Fundamental Theorem 

of Calculus that enabled us to compute the exact value of an integral 

once we identified an antiderivative of the integrand. We displayed a 

short of list of the indefinite integrals of some basic functions. In this 

chapter will discuss the indefinite and definite integrals of linear combi-

nations of functions, and expand the scope of our short list considerably. 

We will also discuss the calculation of the area of a region between the 

graphs of functions 

The Linearity of Indefinite and Definite Integrals 

The rules for the indefinite integrals of constant multiples and sums of 

functions follow from the corresponding rules for differentiation: 

Proposition 1 

1  (THE CONSTANT MULTIPLE RULE FOR INDEFINITE 
INTEGRALS) If c is a constant, 

( ) ( ) .cf x dx c f x dx=
 
  

2  (THE SUM RULE FOR INDEFINITE INTEGRALS) 

( ) ( )( ) ( ) ( ) .f x g x dx f x dx g x dx+ = +
 
 
  

Remark 1 Since the indefinite integral of a function represents any anti-

derivative of the function, and any two antiderivatives of the same func-

tion can differ by a constant, it should be understood that arbitrary con-
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82 INTRODUCTORY CALCULUS: UNDERSTANDING THE INTEGRAL 

stants can be added to either side of an equality that involves indefinite 
integrals. ◊ 

The Proof of Proposition 1 

1.  Assume that F is an antiderivative of f. Thus, 

( ) ( )d
F x f x

dx
=  

for each x in an interval J, so that 

( ) ( ).f x dx F x=
  

By the constant multiple rule for differentiation, 

( )( ) ( ) ( )d d
cF x c F x cf x

dx dx
= =  

for each ∈ .x J  Therefore, 

( ) ( ) ( ) .cf x dx cF x c f x dx= =
 
  

2.  Assume that 

( ) ( ) ( ) ( ) and 
d d

F x f x G x g x
dx dx

= =  

for each x in an interval J, so that 

( ) ( ) ( ) ( )and .f x dx F x g x dx G x= =
 
  

By the sum rule for differentiation, 

( ) ( )( ) ( ) ( ) ( ) ( )d d d
F x G x F x G x f x g x

dx dx dx
+ = + = +  

for each ∈ .x J  Therefore, 

( ) ( )( ) ( ) ( ) ( ) ( ) .f x g x dx F x G x f x dx g x dx+ = + = +
 
 
  

� 
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Example 1 
a) Determine 

( )4cos .x dx
  

b) Evaluate 

( )
4

6
4cos .x dx

π

π
  

Solution 
a) We have 

( ) ( )cos sinx dx x=
  

(on the entire number line). By the constant multiple rule for indefinite 

integrals, 

( ) ( ) ( )4cos 4 cos 4sin .x dx x dx x= =
 
  

As in Remark 1, it should be understood that an arbitrary constant 

C can be added to 4 sin (x). If we wish to emphasize this, we may write 

( ) ( )4cos 4 sin .x dx x C= +
  

b) The constant in the expression for the indefinite integral is not rele-

vant to the evaluation of the definite integral. Any antiderivative will 

do for the evaluation of the definite integral with the help of the 

Fundamental Theorem of Calculus. Thus, 

( ) ( )4 4

66
4cos 4 sin 4sin 4sin

4 6

2 1
4 4 2 2 2.

2 2

x dx x
π π

ππ

π π� � � �= = −� � � �
� � � �

� � � �= − = −� � � �
� �� �



 

� 

Example 2 Evaluate 

( )2
2

0
1 .x dx+
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Solution 

By the sum rule for indefinite integrals and the reverse power rule, 

( )2 2 31
1 1 ,

3
x dx x dx dx x x C+ = + = + +
 
 
  

where C is an arbitrary constant. The constant can be ignored for the 

evaluation of the definite integral. By the Fundamental Theorem of 

Calculus, 

( )
2

2 3

0

1 8 14
1 2 .

3 3 3
x dx x x+ = + = + =
  

� 

We can combine parts 1 and 2 of Proposition 1 and obtain the rule 

for indefinite integrals that corresponds to the linearity of differentiation: 

Theorem 1 (THE LINEARITY OF INDEFINITE INTEGRALS) 
Assume that c1 and c2 are constants. Then 

( ) ( ) ( )1 2 1 2( ( )) .c f x c g x dx c f x dx c g x dx+ = +
 
 
  

Proof 
By the sum rule for indefinite integrals, 

( )( ) ( ) ( )1 2 1 2( ) .c f x c g x dx c f x dx c g x dx+ = +
 
 
  

By the constant multiple rule for indefinite integrals, 

( ) ( ) ( ) ( )1 2 1 2 .c f x dx c g x dx c f x dx c g x dx+ = +
 
 
 
  

Therefore, 

( ) ( )( ) ( ) ( )1 2 1 2 .c f x c g x dx c f x dx c g x dx+ = +
 
 
  

� 
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Example 3 Let 

( ) ( )( )( ) 3 22 1 3 2 5 6.f x x x x x x x= + − − = − − +  

a) Determine 

( ) .f x dx
  

b) Sketch the region G between the graph of f and the interval [−1, 3]. 

Compute the signed area of G and the area of G. 

Solution 
a) By the linearity of indefinite integrals and the reverse power rule, 

( )3 2 3 2

4 3 2

4 3 2

2 5 6 2 5 6 1

2 5 6
4 3 2

1 2 5
6 ,

4 3 2

x x x dx x dx x dx xdx dx

x x x
x C

x x x x C

− − + = − − +

� � � �
= − − + +� � � �

� � � �

= − − + +


 
 
 
 


 

where C is an arbitrary constant. 

b) Figure 1 shows the region G. 

 

The signed area of G is 

( ) ( )
33

1 1

3

4 3 2

1

1 2 5
6

4 3 2

9 91 9 91 16
.

4 12 4 12 3

f x dx f x dx

x x x x

− −

−

=

= − − +

� �= − − − = − + =� �
� �


 


 

  

3 2 1 1 2 3 4
x

10

5

5

10

y
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Since f (x) > 0 if −1 < x < 1 and f (x) < 0 if 1 < x < 3, the area of G is 

( ) ( )
−

−

� � � �
− = − − + − − − +� � � �� � � �

� � � �
� �= − − = + =� �
� �


 

1 3

1 3
4 3 2 4 3 2

1 1
1 1

1 2 5 1 2 5
6 6

4 3 2 4 3 2

32 16 32 16
16.

3 3 3 3

f x dx f x dx x x x x x x x x
 

� 

A polynomial is a linear combination of a constant function and 

functions defined by positive-integer powers of x. Therefore we can de-

termine the indefinite integral of any polynomial, as in Example 3. 

Example 4 
a) Determine 

( ) ( )1
sin sin 3

3
x x dx� �+� �

� �
  

b) Compute 

( ) ( )
3

1
sin sin 3 .

3
x x dx

π

π

� �+� �
� �
  

Solution 
a) The formula 

( ) ( )1
sin cos ,x dx x Cω ω

ω
= − +
  

where � is a nonzero constant and C is an arbitrary constant is on the short 

list of Section 5.3. With the help of the linearity of indefinite integrals, 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 1
sin sin 3 sin sin 3

3 3

1 1
cos cos 3

3 3

1
cos cos 3 ,

9

x x dx x dx x dx

x x

x x C

� �+ = +� �
� �

� �= − + −� �
� �

= − − +


 
 


 

where C is an arbitrary constant. 
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b) By the result of part a) and the Fundamental Theorem of Calculus, 

( ) ( ) ( ) ( )

( ) ( ) ( )

π
π

π
π

ππ π π

� �+ = − −� �
� �

� �� � � �= − − − − −� � � �� �� � � �� �

= + =


 3
3

1 1
sin sin 3 cos cos 3

3 9

1 1
cos cos 3 cos cos

9 3 9

10 7 3
.

9 18 2

x x dx x x

 

Figure 2 shows the region G between the graph of f and the interval 

[π/3, π]. Since f (x) > 0 if π/3 < x < π, the area of G is 

( )
3

3
.

2
f x dx

π

π
=
  

� 

 

Figure 2 

Recall that a trigonometric polynomial can be expressed as a linear 

combination of a constant function and functions defined by sin (nx) 

and cos (nx), where n is a positive integer. We can determine the indefi-

nite integral of a trigonometric polynomial as in Example 4. 

As in the above examples, the linearity of indefinite integrals enables 

us to calculate the definite integrals of linear combinations of functions 

whose indefinite integrals are known. Nevertheless, we will need to refer 

to the linearity of definite integrals as well. 

Proposition 2 Assume that f and g are integrable on the interval [a, b] 
and c is a constant. Then, 

1  (THE CONSTANT MULTIPLE RULE FOR DEFINITE IN-
TEGRALS) 

( ) ( ) .
b b

a a
cf x dx c f x dx=
 
  

2 π π
3

π 2 π
x

0.5

0.5

y

www.EngineeringEBooksPdf.com



88 INTRODUCTORY CALCULUS: UNDERSTANDING THE INTEGRAL 

2  (THE SUM RULE FOR DEFINITE INTEGRALS) 

( ) ( )( ) ( ) ( ) .
b b b

a a a
f x g x dx f x dx g x dx+ = +
 
 
  

As in the case of indefinite integrals, Proposition 2 leads to the line-

arity of the definite integral: 

Theorem 2 (THE LINEARITY OF DEFINITE INTEGRALS) As-
sume that f and g are integrable on the interval [a, b], and c1, c2 are 
constants. Then 

( ) ( )( ) ( ) ( )1 2 1 2 .
b b b

a a a
c f x c g x dx c f x dx c g x dx+ = +
 
 
  

We will leave the rigorous proof of Proposition 2 to a course in ad-

vanced calculus. Let’s discuss the plausibility of the statements of Propo-

sition 2 under the assumption that f and g are continuous on [a, b]: 

Let mn (f ) and mn (g) denote the midpoint sums for f and g, respec-

tively, corresponding to the partitioning of [a, b] to n subintervals of 

equal length. We have 

( ) ( ) ( ) ( )lim  and lim .
b b

n na an n
m f f x dx m g g x dx

→∞ →∞
= =
 
  

Therefore, 

( ) ( )( ) ( ) ( ) ( ) ( )
→∞ →∞ →∞

+ = + = +
 
lim lim lim .
b b

n n n n a an n n
m f m g m f m g f x dx g x dx  

You can confirm that mn (f ) + mn (g) is a midpoint sum for f + g, 
corresponding to the partitioning of [a, b] to n subintervals of equal 

length, and f + g is continuous on [a, b]. Therefore, 

( ) ( )( ) ( ) ( )( )lim .
b

n n an
m f m g f x g x dx

→∞
+ = +
  

Thus, 

( ) ( )( ) ( ) ( ) .
b b b

a a a
f x g x dx f x dx g x dx+ = +
 
 
  

  

www.EngineeringEBooksPdf.com



 THE INDEFINITE AND DEFINITE INTEGRALS 89 

Similarly, cmn (f ) is a midpoint sum for cf corresponding to the par-

titioning of [a, b] to n subintervals of equal length, so that 

( ) ( )lim .
b

n an
cm f cf x dx

→∞
= 
  

Since 

( ) ( ) ( )lim  lim ,
b

n n an n
cm f c m f c f x dx

→∞ →∞
= = 
  

we have 

( ) ( ) .
b b

a a
cf x dx c f x dx=
 
  

� 

Unlike Theorem 1, Theorem 2 is applicable even if we are not able 

to recognize the antiderivatives of f and g, as in the following example. 

Example 5 It is known that 

1 1
2

20 0

1 3
and 4 .

6 2 34
dx x dx

x

π π= − = +
−
 
  

Determine 

1
2

20

2
3 4 .

4
x dx

x

� �
− −� �� �−� �


  

Solution 

By the linearity of the definite integral, 

1 1 1
2 2

2 20 0 0

2 1
3 4 2 3 4

4 4

3
2 3

6 2 3

2 3 3
.

3 2

x dx dx x dx
x x

π π

π

� �
− − = − −� �

− −� �
� �� �= − +� �� �

� � � �

= − −


 
 


 

� 
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The Area of a Region between the Graphs of Functions 

Thanks to the linearity of integration, we can calculate the area of a re-

gion between the graphs of two functions. In order to be specific, let’s 

assume that f and g are continuous on [a, b], f (c) = g(c), where a < c < b, 
f (x) > g(x) if a ≤ x ≤ c, and g(x) > f (x) if c < x ≤ b. Figure 3 illustrates 

such a case. 

 

Figure 3 

We would like to calculate the area of the region G between the 

graph of f, the graph of g, the line x = a, and the line x = b. With refer-

ence to Figure 3, the area of G is the sum of the areas of G1 and G2. The 

area of the region G1 can be obtained by subtracting the area of the re-

gion between the graph of g and the interval [a, c] from the area of the 

region between the graph of f and [a, c]. Thus, the area of G1 is 

( ) ( ) ( ) ( )( ) .
c c c

a a a
f x dx g x dx f x g x dx− = −
 
 
  

Similarly, the area of the region G2 is 

( ) ( )( ) .
b

c
g x f x dx−
  

Thus, the area of G is 

( ) ( )( ) ( ) ( )( ) .
c b

a c
f x g x dx g x f x dx− + −
 
  

Note that |f (x) − g (x)| = f (x) − g (x) if a ≤ x ≤ c, since f (x) ≥ g (x) in 

this case. If c ≤ x ≤ b, then |f (x) − g (x)| = − (f (x) − g (x)) = g (x) − f (x), 

since g (x) ≥ f (x) for each [ , ].x c b∈  Therefore, 

x

y

G1 G2

f

g

ca b
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( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )

− + − = − + −

= −


 
 
 



 .

c b c b

a c a c

b

a

f x g x dx g x f x dx f x g x dx f x g x dx

f x g x dx
 

Thus, the area of G can be expressed as 

( ) ( ) .
b

a
f x g x dx−
  

This fact is true in the general case: If f and g are continuous on [a, 
b], the area of the region between the graph of f, the graph of g, the 
line x = a and x = b is 

( ) ( ) .
b

a
f x g x dx−
  

As a special case, we can express the area of the region between the 

graph of a function f and an interval [a, b] as 

( ) .
b

a
f x dx
  

(g = 0). 

Remark 2 We can arrive at the expression for the area of a region be-

tween the graphs of functions by going back to the definition of the 

integral. Thus, assume that the graphs of f and g are as in Figure 4. 

 

Figure 4 

Let P = {x0, x1, . . . , xn−1, xn} be a partition of [a, c]. If �xk = xk−xk−1, 

and ||P|| = maxk �xk is small, we can approximate the area of the slice of 

the region G between the lines x = xk−1 and x = xk by the area of a rec-

tangle whose dimensions are �xk and * *( ) ( )k kf x g x− , where *

kx  is an 

arbitrary point between xk−1 and xk. The area of such a rectangle is 

x

y

xk 1 xk

xk

f xk g xk

f

g

a c

G
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( ) ( )( )* * ,k k kf x g x xΔ−  

as illustrated in Figure 4. Thus, the sum 

( ) ( )( )* *

1

n

k k k
k

f x g x xΔ
=

−�  

approximates the area of G if maxk �xk is small. But this is a Riemann 

sum that approximates 

( )( )( ) .
c

a
f x g x dx−
  

Therefore, we have reached the same expression for the area of G as 

before. ◊ 

Example 6 Let f (x) = x2 − 2x − 1 and g (x) = −x2 + 2x + 5. 

a) Sketch the region G between the graph of f, the graph of g, the line x 

= 1 and the line x = 5. 

b) Calculate the area of G. 

Solution 
a) Figure 5 shows the region G. 

 

Figure 5 

b) In order to determine the x-coordinates of the points at which the 

graphs of f and g intersect, we need to find the solutions of the equa-

tion f (x) = g(x): 

2 2 22 1 2 5 2 4 6 0

1 or 3.

x x x x x x
x x

− − = − + + ⇔ − − =
⇔ − =

 

1
x

10

10

y

f

g

G1 G2

1 3 5

www.EngineeringEBooksPdf.com



 THE INDEFINITE AND DEFINITE INTEGRALS 93 

With reference to Figure 5, the area of G is the sum of the areas of 

G1 and G2. 

( )3 3
2

1
1 1

3

3 2

1

The area of ( ( ) ( )) 2 4 6

2 32
2 6 .

3 3x

G g x f x dx x x dx

x x x
=

= − = − + +

= − + + =


 

 

( )5 5
2

2
3 3

5

3 2

3

The area of ( ( ) ( )) 2 4 6

2 64
2 6 .

3 3

G f x g x dx x x dx

x x x

= − = − −

= − − =


 

 

Therefore, the area of G is 

32 64
32.

3 3
+ =  

� 

Example 7 Let f (x) = −x2 + 1 and g(x) = sin (x). 

a) Plot the graphs of f and g and determine approximations to the 

points x1 and x2 such that x1 < 0 < x2 and the graphs of f and g inter-

sect at the corresponding points, with the help of your calculator. 

b) Express the area of the region G between the graphs of f and g and 

the lines x = x1 and x = x2 as an integral. Determine an approxima-

tion to the integral with the help of your calculator. 

Solution 
a) Figure 6 shows the region G. The picture indicates that the  

x-coordinates of the points at which the graphs of f and g intersect are 

approximately −1.5 and 0.5. We have 1 1.409 62x ≅ −  and 

2 0.636 733,x ≅  rounded to 6 significant digits. 

 

Figure 6 

2 1 2
x

1

1

y

G

x1 x2
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b) Since f (x) > g (x) if x1 < x < x2, the area of G is 

( ) ( )

( )

2 2

1 1

2

1

2

3

( ( )) ( 1 sin( ))

cos 1.67021.
3

x x

x x

x

x

f x g x dx x x dx

x
x x

+− = − + −

= − + + ≅


 

 

� 

Remark 3 Assume that v(t) is the velocity at time t of an object in one-

dimensional motion, and f is the corresponding position function. As 

we saw in Section 4.3, the displacement of the object over the time 
interval [a, b] is 

( ) ( ) ( )υ− = 
 .
b

a
f b f a t dt  

The distance traveled by the object over the same time interval cor-

responds to the area of the region between the graph of the velocity 

function on [a, b] and can be expressed as 

( ) .
b

a
t dtυ
  

The absolute value of the velocity is the speed of the object. Thus, 

the distance traveled by the object over a time interval is the integral of 
the speed of the object over that time interval. ◊ 

Example 8 Assume that 

( ) 2sin
4

t
tυ � �= � �

� �
 

is the velocity at time t of an object in one-dimensional motion (in cen-

timeters per second). 

a) Sketch the graph of v on the interval [0, 8π]. 

b) Determine the displacement of the object over the time interval [0, 6π]. 

c) Determine the distance traveled by the object over the time interval 

[0, 6π]. 
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Solution 
a) Figure 7 shows the graph of v on [0, 8π]. 

 

Figure 7 

b) The displacement of the object over the time interval [0, 6π] is 

( )
6 6 6

0 0 0
2 sin 2 sin .

4 4

t t
t dt dt dt

π π π
υ � � � �= =� � � �

� � � �
 
 
  

We have 

1
sin cos 4cos ,

4 1 4 4 4

t t t
dt C C� � � � � �= − + = − +� � � � � �

� � � � � �
  

where C is an arbitrary constant. Therefore, 

( )
6

6

0
0

3
2 sin 2 4cos 2 4cos 4cos 0 8.

4 4 2

t t
dt

π
π π� � � �� � � � � �= − = − + =� �� � � � � �� �� �� � � � � �� �� �

  

Thus, the displacement of the object over the time interval [0, 6π] is 

8 (centimeters). 

c) We have v (t) > 0 if 0 < t < 4π and v (t) < 0 if 4π < t ≤ 6π. Therefore 

the distance traveled by the object over the time interval [0, 6π] is 

( ) ( ) ( ) ( ) ( )

( )

6 4 6 4 6

0 0 4 0 4

4 6

0 4
2sin 2sin

4 4

16 8 24

t dt t dt t dt t dt t dt

t t
dt dt

π π π π π

π π

π π

π

υ υ υ υ υ= + − = −

� � � �= −� � � �
� � � �

= − − =


 
 
 
 



 
  

(check). Graphically, the area of the region between the graph of the 

velocity function and the interval [0, 6π] is 24.� 
  

t

2

2
v

6π4π 8π

www.EngineeringEBooksPdf.com



 
 

www.EngineeringEBooksPdf.com



CHAPTER 6 

Using the Substitution  
Rule for Integrals 

The substitution rule for indefinite integrals follows from the chain 
rule for differentiation. The rule enables us to transform a given antidif-

ferentiation problem to a tractable expression. The definite integral ver-

sion of the substitution rule is useful in establishing significant general 

facts. 

The Substitution Rule for Indefinite Integrals 

Consider the indefinite integral 

( )2sin 2 .x xdx
  

If we set u (x) = x2, then 

( )2 2 .
du d

x x
dx dx

= =  

Therefore 

( )( ) ( )2sin 2 sin .
du

x x dx u dx
dx

=
 
  

It is tempting to replace the symbol 

du
dx

dx
 

by du, and write 

( ) ( )sin sin .
du

u dx u du
dx

=
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Assume that the above equality is true. Since we know that 

( ) ( )sin cos ,u du u C= − +
  

where C is an arbitrary constant, we are led to claim that 

( ) ( ) ( )2 2sin 2 cos cos .x xdx u C x C= − + = − +
  

This is indeed the case, as you can check by differentiating the right-

hand side. The procedure that we described above is valid: 

Theorem 1 (THE SUBSTITUTION RULE FOR INDEFINITE 
INTEGRALS) Assume that f is continuous on the interval I, u is a dif-
ferentiable function on the interval J and ( )u x I∈  if .x J∈  Then, 

( )( ) ( )du
f u x dx f u du

dx
=
 
  

where .x J∈  

The expression 

( )f u du
  

denotes a function of u. It should be understood that the above equality 

is valid, provided that u is replaced by its expression in terms of x. Since 

the equality involves indefinite integrals, we are entitled to add arbitrary 

constants to either side. 

The Proof of Theorem 1 

By the second part of the Fundamental Theorem of Calculus, the 

continuous function f  has an antiderivative F on the interval I. Thus, 

( ) ( ) ( ) ( )d
F u f u F u f u du

du
= ⇔ = 
  

on I. Let’s consider the composite function F � u on J. By the chain rule, 

( )( ) ( )( ) ( )
( )

( ) ( )( )
=

� �� �= = =� �� �� �� �� �
�

u u x

d d d d du
F u x F u x F u u x f u x

dx dx du dx dx
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for each .x J∈  Therefore 

( )( ) ( )( )du
f u x dx F u x

dx
=
  

on J. Since 

( ) ( ) ,F u f u du= 
  

we have 

( )( ) ( )( ) ( )
( )u u x

du
f u x dx F u x f u du

dx =
= =
 
  

on J. Therefore, 

( )( ) ( ) ,
du

f u x dx f u du
dx

=
 
  

with the understanding that the right-hand side is evaluated at u (x). � 

Example 1 Determine 

( ) ( )2sin cos .x x dx
  

Solution 

We set u(x) = sin (x). Then, 

( ) ( )sin cos .
du d

x x
dx dx

= =  

Therefore, 

( ) ( ) ( )( ) ( ) ( )( )2 2
2sin cos sin cos

du
x x dx x x dx u x dx

dx
= =
 
 
  

By the substitution rule and the reverse power rule, 

( )( )2
2 31

,
3

du
u x dx u du u C

dx
= = +
 
  

where C is an arbitrary constant. Therefore, 
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( ) ( ) ( )2 3 31 1
sin cos sin .

3 3
x x dx u C x C= + = +
  

The expression is valid on the entire number line. � 

As in the above example, the substitution rule is helpful when it 

helps us transform the given indefinite integral to a familiar indefinite 

integral. 

Remark 1 It is easy to remember the substitution rule: In the expression 

( )( ) ,
du

f u x dx
dx
  

we can treat 

du
dx

 

as a “symbolic fraction”, carry out “symbolic cancellation” and write 

( )( ) ( ) .
du

f u x dx f u du
dx

=
 
  

Thus, we can set 

du
du dx

dx
=  

when we implement the substitution rule. There is no need to try to 

attach a mystical meaning to the symbolic manipulation, though: We 

are merely describing a practical way to remember the substitution rule. 

Within the present context, the symbol 

du
dx

dx
 

does not express the value of the differential du (x, dx) that we discussed 

in Section 2.5, even though the notation is the same. ◊ 
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Example 2 Determine 

24 .x x dx−
  

Solution 

Let’s set u = 4 − x2. Then 

( )24 2 .
du d

x x
dx dx

= − = −  

Therefore, 

2 .
du

du dx xdx
dx

= = −  

By the substitution rule, 

( ) 1 22 21 1 1
4 4 2 .

2 2 2

du
x x dx x x dx u dx u du

dx
− = − − − = − = −
 
 
 
  

By the reverse power rule, 

3 2
1 2 3 21 1 1

,
2 2 3 2 3

u
u du C u C

� �
− = − + = − +� �� �

� �

  

where C is an arbitrary constant. Therefore, 

( )
2

3 23 22 2

4

1 1
4 4 .

3 3u x

x x dx u C x C
= −

− = − + = − − +
  

Note that we can take a shortcut by using the formalism 

,
du

du dx
dx

=  

and we won’t go wrong. Thus 

( )24 2 ,
d

du x dx xdx
dx

= − = −  
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so that we will replace xdx by 

1
.

2
du−  

Therefore, 

1 22 2 1 1
4 4 ,

2 2
x x dx x xdx u du u du� �− = − = − = −� �

� �
 
 
 
  

as before. � 

Remark 2 Note that the implementation of the substitution rule was 

successful in Examples 1 and 2, since the rule enabled us to transform 

the given indefinite integral to a constant multiple of 

,ru du
  

so that we were able to apply the reverse power rule. More generally, if 

we recognize that the given indefinite integral can be expressed as a con-

stant multiple of 

( ) ,r du
u x dx

dx
  

the substitution rule leads to ∫ ur du. ◊ 

Remark 3 In Section 5.3 we noted that 

( ) ( ) ( ) ( )1 1
sin cos  cos sin ,x dx x C and x dx x Cω ω ω ω

ω ω
= − + = +
 
  

for any constant � ≠ 0, where C denotes an arbitrary constant. The 

basic formulas are 

( ) ( ) ( ) ( )sin cos  cos sin ,x dx x C and x dx x C= − + = +
 
  

since these lead to the more general formulas by the substitution u = �x. 
Indeed, 

.
du

u x
dx

ω ω= � =  
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Therefore, 

( ) ( ) ( ) ( )1 1 1
sin sin sin sin ,

du
x dx x dx u dx u du

dx
ω ω ω

ω ω ω
= = =
 
 
 
  

by the substitution rule. Thus, 

( ) ( ) ( ) ( )1 1 1
sin sin cos cos .x dx u du u C x Cω ω

ω ω ω
= = − + = − +
 
  

The formula that involves cos (�x) can be obtained in a similar 

manner. ◊ 

Example 3 
a) Determine 

( )tan .x dx
  

Specify the intervals on which the antidifferentiation formula is valid. 

b) Compute 

( )7 6

3 4
tan .x dx

π

π
  

Solution 
a) We have 

( ) ( )
( )

sin
tan .

cos

x
x dx dx

x
=
 
  

Let’s set u = cos (x). Then, 

( )sin .
du

x
dx

= −  

Therefore, 

( )
( ) ( ) ( )( )

( ) ( )( )

sin 1
sin

cos cos

1

1

1
ln ln cos ,

x
dx x dx

x x
du

dx
u dx

du
dx

u dx

du u C x C
u

=

� �= −� �
� �

= −

= − = − + = − +
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where C is an arbitrary constant. Thus, 

( ) ( )( )tan ln cos .x dx x C= − +
  

The above expression is valid on any interval of the form 

, , 0, 1, 2,....
2 2

n n n
π ππ π� �− + + = ± ±� �

� �
 

b) By part a) and the Fundamental Theorem of Calculus, 

( ) ( )( )

( ) ( ) ( )

( ) ( )

7 6 7 6

3 43 4
tan ln cos

7 3
ln cos ln cos

6 4

3 2
ln ln

2 2

3 2
ln ln

2 2

1 1
ln 3 ln 2 ln(2) ln 2

2 2
1 1

ln 3 ln 2 0.202733.
2 2

x dx x
π π

ππ

π π

= −

� � � �� � � �= − +� � � �� � � �
� � � �� � � �

� � � �
= − − + −� � � �� � � �

� � � �
� � � �

= − +� � � �
� � � �

= − + + −

= − + ≅ −




 

The above integral corresponds to the signed area of the region be-

tween the graph of tangent and the interval [3π/4, 7π/6], as indicated in 

Figure 1. � 

 

Figure 1 

  

x

4

4

y

π

2

π

3 π

4
3 π

2

7 π

6
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Example 4 
a) Determine 

2
.

1

x
dx

x +
  

b) Evaluate 

4

22 1

x
dx

x +
  

Solution 
a) If we set u = x2 + 1, we have 

1
2 .

2

du du
x x

dx dx
= � =  

Thus, 

2 2

1 1 1 1 1 1
.

1 1 2 2 2

x du du
dx dx dx du

x x dx u dx u
� �= = =� �+ + � �
 
 
 
  

Symbolically, 

1
2 ,

2

du
du dx xdx xdx du

dx
= = � =  

so that 

2 2

1 1 1 1 1
.

1 1 2 2

x
dx xdx du du

x x u u
� �= = =� �+ + � �
 
 
 
  

Either way, 

( ) ( ) ( )= = + = + + = + +
+
 
 2 2

2

1 1 1 1 1
ln ln 1 ln 1 ,

1 2 2 2 2

x
dx du u C x C x C

x u
 

where C is an arbitrary constant. 

b) By part a) and the Fundamental Theorem of Calculus, 

( ) ( ) ( )
4

4
2

22
2

1 1 1
ln 1 ln 17 ln 5 0.611888.

1 2 2 2x

x
dx x

x =

= + = − ≅
+
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The above integral is the area between the graph of 

2 1

x
y

x
=

+
 

and the interval [2, 4], as illustrated in Figure 2. � 

 

Figure 2 

Remark 4 The previous two examples illustrate the appearance of the 

natural logarithm in many antidifferentiation formulas. Indeed, if we 

have an indefinite integral that can be expressed as constant multiple of 

( )
( )

,
f x

dx
f x
′


  

the substitution u = f (x) works: 

( ) ( ) ( ) ( )( )1 1 1
ln ln ,

du
f x dx dx du u C f x C

f x u dx u
′ = = = + = +
 
 
  

where C is an arbitrary constant. ◊ 

The Substitution Rule for Definite Integrals 

An indefinite integral that is determined with the help of the substitu-

tion rule can be used to evaluate a definite integral, as in the above ex-

amples. There is also a version of the substitution rule which applies 

directly to definite integrals: 

Theorem 2 (THE SUBSTITUTION RULE FOR DEFINITE INTE-
GRALS) Assume that f is continuous on the interval determined by u(a) 
and u(b), and that du/dx is continuous on the interval [a, b]. Then 

8 6 4 2 2 4 6 8
x

0.4

0.4

y
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( )( ) ( )
( )

( )
.

b u b

a u a

du
f u x dx f u du

dx
=
 
  

Proof 
The substitution rule for definite integrals is derived in a way that is 

similar to the derivation of the substitution rule for indefinite integrals. 

Let F be an antiderivative of f in the interval determined by u(a) and 

u(b). Thus, 

( ) ( )d
F u f u

du
=  

if u between u(a) and u(b). By the chain rule, 

( )( )
( )

( )( )
u u x

d dF du du
F u x f u x

dx du dx dx=

� �
= =� �� �
� �

 

if [ , ]x a b∈ . The first part of the Fundamental Theorem of Calculus 

implies that 

( )( ) ( )( ) ( )( ) ( )( ) .
b b

a a

d du
F u b F u a F u x dx f u x dx

dx dx
− = =
 
  

The first part of the Fundamental Theorem of Calculus also implies 

that 

( )( ) ( )( ) ( )
( )

( ) ( )
( )

( )
.

u b u b

u a u a

dF u
F u b F u a du f u du

du
− = =
 
  

Therefore, we must have 

( )( ) ( ) ( )
( )

( )
,

b u b

a u a

du x
f u x dx f u du

dx
=
 
  

as claimed. � 
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Remark 5 (Caution) Even though the substitution rule for definite integrals 

has an appearance which is similar to the substitution rule for indefinite 

integrals, Theorem 2 expresses a new rule, since definite and indefinite inte-

grals are different kinds of entities (functions versus numbers). Also note the 
change in the limits of integration: The integral on the right-hand side is 
evaluated from u(a) to u(b), and not from a to b, as in the original inte-
gral. ◊ 

Example 5 Evaluate 

( ) ( )2 2 3

0
cos sinx x dx

π


  

by using the substitution rule for definite integrals. 

Solution 

We set u = cos (x) so that 

( ) ( )cos sin .
du d

du dx x dx x dx
dx dx

� �= = = −� �
� �

 

Therefore, 

( ) ( )
( )

( )

2
3

2 cos 22 3 2 3

0 cos 0

1

11
0 12 3 2 3 5 3

1 0
0

0

cos sin

3 3
.

2 5 51
3

u

u

du
x x dx u dx

dx

u
u du u du u

π π=

=

+

� �= −� �
� �

= − = = = =
+


 



 

 

Figure 3 shows the graph of 

( ) ( ) ( )2 3
cos sin .f x x x=  

The integral that we calculated is the area of the shaded region. � 

 

Figure 3 

π
2

π
2

π
x

0.5

0.5

y
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Example 6 Evaluate 

( )

( ) 2ln 3

ln 2

xe xdx−
  

by using the substitution rule for definite integrals. 

Solution 

We set u = −x2, so that 

( )( ) ( ) ( )( ) ( )2 , ln 2 ln 2  and u ln 3 ln 3 .
du

x u
dx

= − = − = −  

Therefore, 

( )

( )

( )

( ) ( )
( )

( )

( )

( )

( )

( )

( )

( )( )
( ) ( )

( ) ( )

2 2ln 3 ln 3 ln 3

ln 2 ln 2 ln 2

ln 3

ln 2

ln 3

ln 2

ln 3

ln 2

ln 3 ln 2

ln 3 ln 2

1 1
2

2 2

1

2
1

2
1

2
1 1

2 2

1 1 1 1

2 2e e

1 1 1 1 1
.

2 3 2 2 12

x x u

u

u

u

du
e xdx e x dx e dx

dx

e du

e du

e

e e

− −

−

−

−

−

−

−

− −

� �= − − = −� �
� �

= −

= −

= −

= − +

� � � �= − +� � � �
� � � �
� � � �= − + =� � � �
� � � �


 
 







 

Thus, the area of the region between the graph of 
2xy e −= x and the 

interval ( ) ( )ln 2 , ln 3	 

� �  that is illustrated in Figure 4 is 1/12. � 

 

Figure 4 

1.5 1.5
x

0.4

0.4

y

ln 2 ln 3
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The definite integral version of the substitution rule does not offer 

an advantage over the indefinite integral version of the rule if 

( )( ) ( )du
f u x dx f u du

dx
=
 
  

and 

( )f u du
  

can be expressed in terms of familiar functions. On the other hand, the 

substitution rule for definite integrals leads to useful facts about inte-

grals, as in the following proposition: 

Proposition 1 

a) If f is even and continuous on [�a, a], then 

( ) ( )
0

2
−

=
 
 .
a a

a
f x dx f x dx  

b) If f is odd and continuous on [�a, a], then 

( ) 0
−

=
 .
a

a
f x dx  

Both parts of Proposition 1 are plausible. If f is even, the graph of f is 
symmetric with respect to the vertical axis. With reference to Figure 5, 

the area of GL is the same as the area of GR. 

 

Figure 5 

Thus, 

( ) ( ) ( ) ( ) ( )

( ) ( )
− −

= + = +

= × =


 
 




0

0

0

area of the area of 

2 area of 2 .

a a

L Ra a
a

R

f x dx f x dx f x dx G G

G f x dx
 

x

GRGL

a a
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If f is odd, the graph of f is symmetric with respect to the origin. 

With reference to Figure 6, the signed area of G− is (−1) × the area of G+. 

 

Figure 6 

Thus, 

( ) ( ) ( ) ( ) ( )− +− −
= + = + =
 
 


0

0
the signed area of the area of 0.

a a

a a
f x dx f x dx f x dx G G  

The Proof of Proposition 1 

We will prove part a), and leave the similar proof of part b) as an ex-

ercise. Thus, assume that f is even. By the additivity of integrals with 

respect to intervals, 

( ) ( ) ( )0

0
.

a a

a a
f x dx f x dx f x dx

− −
= +
 
 
  

Since f is even, we have f (−x) = f (x). Therefore, 

( ) ( )0 0

.
a a

f x dx f x dx
− −

= −
 
  

Let us apply the substitution rule to this integral by setting u = −x. 
Then, du/dx = −1, so that 

( ) ( )( ) ( )

( ) ( ) ( )
( )

( )
− − −

−

− = − − = −

= − = − =


 
 



 
 


0 0 0

0 0

0

1

.

a a a

u a

u a a

du
f x dx f u dx f u dx

dx

f u du f u du f u du
 

Thus, 

( ) ( ) ( )0

0 0

a a

a
f x dx f u du f x dx

−
− = =
 
 
  

x

G

G

a
a
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(the variable of integration is a dummy variable). Therefore, 

( ) ( ) ( ) ( ) ( )

( )
− −

= + = +

=


 
 
 
 




0

0 0 0

0
2 ,

a a a a

a a
a

f x dx f x dx f x dx f x dx f x dx

f x dx
 

as claimed. � 
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CHAPTER 7 

The Fundamental  
Theorem of Calculus and the 
Differential Equation y� = f� 

In this chapter, we will take another look at the Fundamental Theorem 

of Calculus within the framework of differential equations and initial-

value problems. 

In Section 4.6 we saw that the general solution of the differential 

equation y� (x) = ky(x), where k is a constant, is a constant multiple of 

ekx. Thus, we were able to determine the unique solution of the initial-

value problem 

( ) ( ) ( )0 0, ,y x ky x y x y′ = =  

where x0 and y0 are given numbers, as 

( ) ( )0

0 .
k x xy x y e −=  

Now we will consider differential equations of the form 

( ) ( ),y x f x′ =  

where f is a given function, and initial-value problems of the form 

( ) ( ) ( )0 0, ,y x f x y x y′ = =  

where x0 and y0 are given numbers. 
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The Differential Equation y� = f and the  
Fundamental Theorem 

We have y� (x) = f (x) for each x in an interval J if and only if y is an an-

tiderivative of f on J. Therefore, we can express y as the indefinite inte-

gral of f: 

( ) ( ) .y x f x dx= 
  

We will refer to 

( )f x dx
  

as the general solution of the differential equation y� (x) = f (x). The in-

definite integral involves an arbitrary constant. The value of the constant 

is determined uniquely if an initial condition of the form y(x0) = y0 is 

specified, so that the solution of the initial-value problem, 

( ) ( ) ( )0 0,y x f x y x y′ = =  

is uniquely determined. 

Example 1 
a) Determine the general solution of the differential equation 

( ) 2 .y x x′ =  

b) Determine the solution of the initial-value problem 

( ) ( )2  and 2 5.y x x y′ = =  

Solution 

a) We have y� (x) = 2x if and only if 

( ) 22 ,y x xdx x C= = +
  

where C is an arbitrary constant. Thus, 

( ) 2y x x C= +  
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is the general solution of the differential equation y� (x) = 2x. Since C is 

an arbitrary constant, the general solution represents infinitely many 

functions that differ from x2 by the addition of a constant. Figure 1 dis-

plays the members of this family of functions corresponding to C = −4, 

1, 4. If (x, y) is on one of the solution curves, the slope of the line that is 

tangent to that particular solution curve at (x, y) is 2x. Thus, the tangent 

lines to the solution curves corresponding to a given x are parallel to 

each other. 

 

Figure 1 

b) Since y(x) = x2 + C is the general solution of the given differential 

equation, we have 

( ) 22 5 2 5 1.y C C= ⇔ + = ⇔ =  

Therefore, the required solution is 

( ) 2 1.y x x= +  

The graph of y = x2 + 1 is the only member of the family of curves 

y = x2 + C that passes through the point (2, 5). � 

Example 2 
a) Determine the general solution of the differential equation 

( ) ( )sin 4 .y x x′ =  

b) Determine the solution of the initial-value problems, 

( ) ( ) ( )sin 4 , 4 2,y x x y π′ = =  

4 2 2 4
x

4

4

8

y

2,5

y x2 1
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116 INTRODUCTORY CALCULUS: UNDERSTANDING THE INTEGRAL 

and 

( ) ( ) ( )sin 4 , 4 2.y x x y π′ = = −  

Sketch the graphs of the solutions. 

Solution 

a) We have y� (x) = sin(4x) if and only if 

( ) ( ) ( )1
sin 4 cos 4 ,

2
y x x dx x C= = − +
  

where C is an arbitrary constant. This is the general solution of the dif-

ferential equation 

( ) ( )' sin 4 .y x x=  

b) With reference to part a), 

( )1 1
cos .

4 4 4
y C C

π π� � = − + = +� �
� �

 

Therefore, 

( ) 1 7
4 2 2 .

4 4
y C Cπ = ⇔ + = ⇔ =  

Thus, the solution of the initial-value problem 

( ) ( ) ( )sin 4 , 4 2y x x y π′ = =  

is 

( ) ( )1 7
cos 4 .

4 4
F x x= − +  

Similarly, the solution of the initial-value problem 

( ) ( ) ( )sin 4 , 4 2y x x y π′ = = −  

is 

( ) ( )1 9
cos 4 .

4 4
G x x= − −  
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Figure 2 displays the graphs of F and G. Note that 

( ) ( ) ( )sin 4 ,F x G x x′ ′= =  

so that the tangent line to the graph of F at the point (x, F (x)) is parallel 

to the tangent line to the graph of G at (x, G(x)). � 

 

Figure 2 

In the above examples, we were able to determine the relevant indef-

inite integral in terms of familiar functions. This need not be the case. 

Nevertheless, any continuous function has an antiderivative by the sec-

ond part of the Fundamental Theorem of Calculus: We have 

( ) ( )x

a

d
f t dt f x

dx
=
  

for each x J∈  if f is continuous on the interval J and a is a fixed point 

in J. Therefore, we can express the general solution of the differential 

equation y� = f on the interval J as 

( ) ( ) ,
x

a
y x f t dt C= +
  

where a is some point in J and C is a constant. If we are given an initial 

condition of the form y (x0) = y0, it is convenient to set a = x0. In this case, 

( ) ( )
0

,
x

x
y x C f t dt= + 
  

so that 

( ) ( )0

0
0 0 .

x

x
y y x C f t dt C= = + =
  

π

2

π

4

π

4

π

2

x

2

2

y

π 4, 2

π 4, 2

F

G
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Therefore C = y0, and the unique solution of the initial-value prob-

lem 

( ) ( ) ( )0 0' ,y x f x y x y= =  

can be represented as 

( ) ( )
0

0 .
x

x
y x y f t dt= + 
  

In the above expression, we may or may not be able to express the 

integral in terms of familiar functions. In any case, the values of the so-

lution can be approximated by approximating the integral. 

Example 3 
a) Express the solution of the initial-value problem, 

( ) ( ) ( )2sin , 2 3,y x x y′ = =  

in terms of an integral. 

b) Compute approximations to y (3) and y (4) with the help of the ap-

proximate integration facility of your computational utility. 

c) Plot the graph of the solution of part a) on the interval [0, 4] with 

the help of your computational/graphing utility. 

Solution 
a) We can express the solution as 

( ) ( )2

2
3 sin .

x
y x t dt= + 
  

b) We have 

( ) ( )3
2

2
3 3 sin 2.968 79,y t dt= + ≅
  

and 

( ) ( )4
2

2
4 3 sin 2.942 36.y t dt= + ≅
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c) Figure 3 shows the graph of the solution on [0, 4]. � 

 

Figure 3 

Acceleration, Velocity and Position 

Let’s consider the relationships between acceleration, velocity and posi-

tion within the framework of initial-value problems. Assume that f (t) is 
the position, v(t) is the velocity and a(t) is the acceleration at time t of 

an object in one-dimensional motion. Velocity is the rate of change of 

position, and acceleration is the rate of change of velocity: 

( ) ( )and .
df d

t a t
dt dt

υυ = =  

When we introduced these concepts initially, we assumed that the 

position was given, and calculated velocity and acceleration by differen-

tiation. Now we are able to begin with a given acceleration function, 

and determine the velocity and position functions successively. Thus 

assume that a(t) is given. The velocity function v(t) is the solution of the 

differential equation 

( ).
d

a t
dt
υ =  

We have seen that such a differential equation does not have a 

unique solution. On the other hand, if an initial condition is specified, 

the solution is uniquely determined. Thus, assume that the velocity at a 

certain instant t0 is v0, so that v (t0) = v0. We can express the solution of 

the initial-value problem 

( ) ( )0 0, ,
d

a t t
dt
υ υ υ= =  

1 2 3 4
x

1

2

3

y

2,3
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as 

( ) ( )
0

0 .
t

t
t a dυ υ τ τ= + 
  

The position function is uniquely determined if the position of the 

object is specified at some instant. If f(t0) = f0, the position function is 

the solution of an initial-value problem 

( ) ( )0 0, .
df

t f t f
dt

υ= =  

The solution can be expressed as 

( ) ( )
0

0 .
t

t
f t f dυ τ τ= + 
  

Example 4 Assume that an object is falling under the influence of gravita-

tional acceleration of 9.8 meters/second/second. The effect of air re-

sistance is neglected. We model the motion as one-dimensional motion so 

that the number line is vertical, points downward, and the origin coin-

cides with the point at which the object is released. We assume that the 

object is released from rest. Thus, with the above notation, a(t) = 9.8, v(0) 

= 0 and f (0) = 0. Determine v(t) and f (t) at any instant t before the object 

hits the ground. 

Solution 

We have 

( ) ( )9.8, 0 0.
d

a t
dt
υ υ= = =  

Therefore, 

( ) ( ) ( )
0 0

9.8 9.8 meters/sec. .
t t

t a d d tυ τ τ τ= = =
 
  

We have 

( ) ( )9.8  and 0 0.
df

t t f
dt

υ= = =  
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Therefore, 

( ) ( ) ( )2 2

0 0
0

9.8
9.8 4.9 meters .

2

t
t t

f t d d tυ τ τ τ τ τ= = = =
 
  

� 

Example 5 Assume that the acceleration of an object in simple harmonic 

motion is 20 cos (6t) at the instant t. Determine the velocity and the 

position of the object at the instant t if v(π/6) = 0 and f (π/6) = 2 (with 

the notation preceding Example 4). 

Solution 

We have 

( ) ( ) ( )20cos 6  and 6 0.
d

a t t
dt
υ υ π= = =  

Therefore, 

( ) ( ) ( )

( ) ( )

( )

π
π

υ τ τ τ

π

= =

= −

=


 6
6

10
20cos 6 sin 6

3

10 10
sin 6 sin

3 3

10
sin 6 .

3

t
t

t d

t

t

 

We have 

( ) ( )10
sin 6  and 2.

3 6

df
t t f

dt
πυ � �= = =� �
� �

 

Therefore, 

( ) ( )

( )

( ) ( )

( )

( )

6

6

10
2 sin 6

3

10
2 cos 6

18

10 10
2 cos 6 cos

18 18

10 10
2 cos 6

18 18

13 5
cos 6 .

9 9

t

t

f t d

t

t

t

π

π

τ τ

τ

π

= +

� �
= + −� �� �

� �
� �= + − +� �
� �
� �= + − −� �
� �

= −
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Figure 4 shows the graph of f. Note that the motion is periodic with 

period π/3. � 

 

Figure 4 
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fundamental theorem of, 35–44 
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functions, 44–52 

and one-dimensional motion, 52–55 

Corollary to Fundamental Theorem 

of Calculus, 39 

 

Definite integral, 41–42 

constant multiple rule for, 87 

linearity of, 88–95 

substitution rule for, 106–112 

sum rule for, 88 

Differential equation y�=f�, and 

fundamental theorem, 1 

14–122 

 

Error function erf, 73 

Error tolerance, 32 

 

Functions 

area of region between the graphs 

of, 90–95 

indefinite integrals of basic, 44–52 

integrals of piecewise continuous, 

27–31 

Fundamental theorem 

parts of, 79 

second part of, 65–79 

 

Indefinite integrals 

of basic functions, 44–52 

constant multiple rule, 81 

linearity of, 84–87 

substitution rule for, 97–106 

sum rule for, 81–84 

Initial value problem, unique 

solution of, 113–122 

Integral 

in approximation of area 

under graph of function, 3–13 

summation notation, 1–3 

basic functions, indefinite, 44–52 

Mean Value Theorem for, 61–65 

natural logarithm defined as, 74–75 

of piecewise continuous functions, 

27–31 

precise definition of, 33–33 

properties of, 57–60 

Riemann integral and signed area, 

15–27 

substitution rule for 

definite integrals, 106–112 

indefinite integrals, 97–106 

Integrand, 42 

 

Left-endpoint sum, 6–7 

 

Mean Value Theorem, 36 

for integrals, 61–65 

Midpoint sum, 7, 12 

 

Numerical integration schemes, 27 

 

One-dimensional motion, Calculus 

and, 52–55 
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Piecewise continuous functions, 

integrals of, 27–31 

Plausibility argument, 70–72 

Polynomial, 86 

Power rule, 37 

 

Reverse power rule, 45 

Riemann integral and signed area, 

15–27 

Riemann integral of f, 16–17, 32 

Riemann sum for f, 16 

Right-endpoint sum, 7 

 

Sine integral function, 75–77 

Substitution rule 

for definite integrals, 106–112 

for indefinite integrals, 97–106 

Summation index, 1 

Summation notation, 1–3 

 

Triangle inequality for integrals, 58–60 

Trigonometric polynomial, 87 

 

Velocity, 119 
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